
Chapter 10

Acc'essing and Programming
the Video Cards

This chapter explains methods of programming the most popular video cards on
the PC market. Even though the video cards mentioned here differ in their
capabilities, they are all based on the same basic principle. High level languages
such as BASIC, Pascal or C often have their own specific keywords and commands
for controlling screen display. However, many of these commands merely call
BIOS or DOS functions, which are both slow and inflexible in execution.

Direct access

Direct access to the video card is the alternative. Applications from Lotus 1-2-3®
to dBASE® use direct video access coding, to guarantee both speed and that
element of extra control over the video display. The main disadvantage:
Programming in assembly language is required, since the communication here
occurs at the system level. This chapter examines the programming needed for the
best known video cards on the market

Monochrome Display Adapter (MDA), also called a monochrome card

Color Graphics Adapter (CGA), also called a color card

Hercules Graphic Card (HGC)

Enhanced Graphic Adapter (EGA)

Video Graphics Array (VGA)

Most of the graphic cards on the market are compatible with one of the cards
mentioned in this chapter, and the descriptions stated here should apply to those
cards.

457

10. Accessing and ProgramnUng the Video Cards PC System Programming

Video Graphics Array (VGA)

This also applies to the newest generation of video cards, the VGA card. Designed
in conjunction with the IBM PS/2 system, the VGA card is now available to the
general public as an add-on card. This chapter demonstrates some general features
of the EGA and VGA, as well as a few programming techniques.

What's needed

Before a video card can display a character or graphic pixel on a monitor screen or
CRT (cathode ray tube), the card must know the following:

which character or graphic pixel to display

The color of the character or pixel

The location on the screen at which it should be displayed.

PC video cards include RAM which collects information about every CRT screen
pixel or screen location. This RAM memory is called video RAM and interfaces
with the PC's RAM, allowing direct access from the microprocessor.

Speed

Rapid screen changes are important in word processing programs and other PC
applications. For example, if you are paging through a word processing document
at high speed, a 25-line, SO-column screen requires the transmission of 2,000
characters through the video card at one time. Fast data transfer is even more
important for high-resolution graphics. For example, the 200x640-pixel ffiM
Color Graphics Adapter transmits 12S,OOO pixels of graphic information at a time.

Display modes

Each type of video card can have more than one display mode. Text and graphics
display may be very different from one another. The monitor cannot distinguish
between the two modes; it just processes the graphic information sent by the video
card (or video controller). For the programmer and the video card, the modes require
completely different programming techniques.

Graphic mode and text mode

Graphic mode stores the color of a screen pixel in one or more bits, then transmits
the contents of video RAM more or less directly to the screen. Text mode uses a
different method. The ASCII code of a character is stored in video RAM for each
screen location. When the video controller displays the screen, it obtains the
character pattern of the ASCII code from the ROM chip on the video card, then
converts the code into a character matrix of pixels. This pattern then passes to the
monitor and appears on the screen.

458

Abacus 10. Accessing and Programming the Video Cards

PC text mode uses the 256-character extended character set (see Appendix I). Since
these characters are numbered sequentially from 0 to 255, one byte is enough for
each screen position to display the character at the proper position.

Attribute bytes

Every screen position has an attribute byte which indicates the color or display
attribute of the character (underlined, blinking, inverse video, etc.). This means
that two bytes are needed for each position on the screen. Therefore, a total of 4000
bytes are required for a 25-line, SO-column screen. This appears to be a lot of
memory at first glance, but is fairly small when compared to the memory
requirements for bit-mapped graphic screen. In graphic mode, each dot is
represented by one or more bits. A resolution of 64Ox200 pixels requires 12S,OOO
bits (16K).

Another advantage of text mode is the simplicity in exchanging one character for
another on the screen. The bit-map mode has its own advantages. Besides graphic
displays, text can be displayed as individual dots whose pattern is derived from a
character table in RAM installed by the user. This means that the user can design
his own fonts (character sets).

459

10. Accessing and Programming the Video Cards PC System Programming

1O. 1 Anatomy of a Video Card

The figure below shows the individual hardware components of a video card. The
starting point for creating the picture is always the video RAM. This video RAM
contains information about the characters to be displayed, and their display
attributes (color, style, etc.).

Getting to the screen

The character generator first accesses video RAM, reading the characters one by
one, and uses a character pattern table to construct the bit-map that will later form
the character on the screen. The attribute controller also gets information about the
display attributes (color, underlining, reverse, etc.) of the character from the video
RAM. Both modules prepare this information and send it to the signal controller,
which converts it to appropriate signals to be sent to the monitor. The signal
controller itself is controlled by the CRT controller, which is the central point of
video card operations. Besides the monitor and the video RAM, this CRT
controller is one of the most important components of a video system. We will
examine all these components in greater detail.

----------------------------,

CRT

controller

~.

~
Signal

controller

t

,,
~D~

Character
pattern .. Character

generator
Attribute
controller

+ •
VIDEO RAM

,---------------------------
Block diagram of a video card

The monitor

The monitor is the device on which the video data is displayed. Unlike the video
card, the monitor is a "dumb" device. This means it has no memory and cannot be
programmed. All monitors used with PCs are raster-scan devices, in which the
picture is made up of many small dots arranged in a rectangular pattern or raster.

When forming the picture, the electron beam of the picture tube touches each
individual dot and illuminates it if it is supposed to be visible on the screen. This

460

Abacus 10.1 Anatomy of a Video Card

is done by switching on the electron beam as it passes over this dot, causing a
, phosphor particle on the picture tube to light up.

Color monitors

While monochrome monitors need only one electron beam to create a picture,
color monitors use three beams which scan the screen simultaneously. Here a
screen pixel consists of three phosphor particles in the basic colors of light: red,
green, and blue. Each color has a matching electron beam. Any color in the
spectrum can be created by combining these three colors and varying their
intensities.

But since an ionized phosphor particle emits light for only a very brief period of
time, the entire screen must be scanned many times per second to create the
illusion of a stationary picture. PC monitors perform this task between SO and 70
times per second. This repeated re-scanning is called the refresh rate. One rule of
thumb for this rate: The faster the refresh rate, the better quality the picture.

Each new screen image begins in the upper left comer of the screen. From there
the electron beam moves to the right along the first raster line. When it reaches the
end of this line, .the electron beam moves back to the start of the next line down,
similar to pressing the <Return> key on a typewriter. The electron beam then
scans the second raster line, at the end of which it moves to the start of the next
raster line, and so on. Once it reaches the bottom of the screen, the electron beam
returns to the upper left comer of the screen and the process starts over again. The
illustration below shows the path of the electron beam.

Remem ber that the movement of the electron beam is controlled by the video card,
not by the monitor itself.

Horizontal

ON:_ OFF:,/'

Electron beam scan movement

461

10. Accessing and Programming flu! Video Cards PC System Programming

The resolution of the monitor naturally controls the number of raster lines and
columns which the electron beam scans when creating a display. Thus, a monitor
which has only 200 raster lines of 640 raster columns each clearly cannot handle
the high resolutions of an EGA card at 640x350 pixels. The four monitor types
used with a PC generally have the following resolutions:

Resolutions of different monitors
Monitor Vertical Horizontal

Monochrome 350 720
Color 200 640

EGA 350 640
Multisync varies, up to 600 varies up to 800

The CRT controller

The CRT Controller or CRTC is the heart of a video card. It controls the operation
of the video card and generates the signals the monitor needs to create the picture.
Its tasks also include controlling light pens, generating the cursor and controlling
the video RAM.

To inform the monitor of the next raster line, the CRTC sends a display enable
signal at the start of each line, which activates the electron beam. While the beam
moves from left to right over each raster column of the line, the CRTC controls
the individual signals for the electron beam(s) so that the pixels appear on the
screen as desired. At the end of the line, the CRTC disables the display enable
signal so that the electron beam's return to the next raster line doesn't make a
visible line on the screen. The electron beam is directed to the left edge of the
following raster line by the output of a horizontal synchronization signal. The
display enable signal is again enabled at the start of the next raster line, and the
generation of the next line begins.

Overscan

Since the time that the electron beam needs to return to the start of the next line is
less than the time the CRTC needs to get and prepare new information from the
video RAM, there is a short pause. But the electron beam cannot be stopped, so
we get something called overscan, which is visible as the left and right borders of
the actual screen contents. Although this is an undesirable side effect in one sense,
it is useful because it prevents the edges of the screen contents from being hidden
by the edge of the monitor. If the electron beam is enabled while it is traveling
over this border, a color screen border can be created.

462

Abacus 10.1 Anatomy of a Video Card

, ,-r

/
~

hori'lontal

oversean

Y rScreen contents

~

l vertical overllcan , " .creen))ordltr

~-------'••X raater col~n.

Rasters and overscan on a screen

Once the electron beam reaches the end of the last raster line, the display enable
signal is disabled, and a vertical synchronization signal is sent. The electron beam
returns to the upper left comer of the screen. Again the display enable signal is re
enabled and scanning again begins.

Pause and overscan

As with the horizontal electron beam return, a pause results which is displayed in
the fonn of overscan, creating a vertical screen border.

Signal timing

The timing of individual signals varies from video mode to video mode. For this
reason, the CRTC has a number of registers which describe the signal outputs and
their timing. The structure of these registers and how they are programmed will be
discussed in the remainder of this section. Many of these registers come from the
registers of the 6845 video controller from Motorola. This controller is used in the
MDA, CGA, and Hercules graphics cards. The EGA and VGA cards use a special
VLSI (very large scale integration) chip as a CRTC, and its registers are somewhat
more complicated. The techniques described here are intended as general
descriptions for all video cards.

463

10. Accessing and Programming the Video Cards PC System Programming

Registers of the 6845 video controller from Motorola
Reg. Meaning Access
OOH Total horizontal character Write
OIH Display horizontal character Write
02H Horizontal synchronization signal after •.. char Write
03H Duration of horizontal synchronization siqnal in char. Write
04H Total vertical character Write
05H Adjust vertical character Write
06H Display vertical character Write
07H Vertical synchronization signal after •.. char Write
08H Interlace mode Write
09H Number of scan lines~r screen line Write
OAH Startinq line of screen cursor Write
OBH Endinq line of screen cursor Write

These registers, like all of the other registers on the video card, are accessed via I/O
ports with the assembly language instructions IN and OUT. The registers of the
CRTC are accessed through a special address register, rather than directly from the
address space of the processor. The number of the desired CRTC register is written
to the port corresponding to this address register. Then the contents of this register
can be read into a special data register with the IN assembly language instruction.
Ifa value is to be written to the addressed register, it must be transferred to the data
register with the OUT instruction. Then the CRTC automatically places it in the
desired register. These two registers are actually found at successive port addresses,
but these addresses vary from video card to video card.

We will include tables throughout the chapter to describe the contents of individual
CRTC registers under the various video modes. Here's an example which shows
how the contents of these registers are calculated and how the individual registers
are related to each other. If you try some of these calculations with your calculator
or pc, you will notice that some of them do not work out evenly. But since the
registers of the CRTC hold only integer values, they will be rounded up or down.

The basis for the various calculations are the bandwidth and the horizontal and
vertical scan rates of a monitor.

Bandwidth and scan rates of different video cards
Video system Resolution Bandwidth Vert. scan rate Horiz. scan

rate

MDA 720 x 350 16.257 MHz 50 Hz • 18.43 KHz·

eGA 640 x 200 14.318 MHz 60 Hz 15.75 KHz

HGC 640 x 200 14.318 MHz 50 Hz 18.43 KHz

EGA 640 x 350 16.257 MHz 60 Hz 21.85 KHz

640 x 200 14.318 MHz 60 Hz 15.75 KHz

720 x 350 16.257 MHz 50 Hz 18.43 KHz

(*MHz-Me~ahert z, KHz=Kilohertz, Hz-Hertz

The bandwidths in the figure above specify the number of points which the
electron beam scans per second, and is therefore also called the point or dot rate.
The vertical scan rate specifies the number of screen refreshes per second, while the
horizontal scan rate refers to the number of raster lines which the electron beam
scans per second

464

Abacus 10.1 ANltomy of a Video Card

Starting with these values. let's practice calculating the individual CRTC register
values for the 80x2S character text mode on a CGA card.

Dividing the bandwidth by the horizontal scan rate we get the number of pixels
(screen dots) per raster line.

Bandwidth 14.318 MHz
+ Horizontal scan rate 15.570 KHz

Pixels per line 919

Since the CRTC registers generally refer to the number of characters rather than
pixels. this value must be converted to the number of characters per line. This is
done by dividing the number of pixels per line by the width of the character
matrix. On the CGA card this is eight pixels.

Pixels per line 919
+ Pixels per character 8

Characters per line 114

This value. decremented by one. is placed in the ftrst register of the CRTC and
speciftes the total number of characters per line. In the second register we load the
number of characters that will actually be displayed per line. The 80x25 character
text mode usually offers 80 characters.

The difference between the total and the number of characters actually displayed per
line is the number of characters which can be displayed between the horizontal
return and the overscan. The difference in this case is 34 characters.

The duration of the horizontal beam return must be entered in the fourth register of
the CRTC. This register stores the number of characters which could be displayed
during this time. rather than the actual time duration. The monitor specifications
deftne this instead of the video card itself. As a rule this number is between 5% and
15% of the total number of characters per line. A color monitor uses exactly ten
characters.

This leaves 24 characters for the overscan (the horizontal screen border). The third
CRTC register specifies how these characters are divided between the left and right
screen borders. This register specifies the number of character positions which will
be scanned before the horizontal beam return occurs. The BIOS specifies the value
90 here. or after ten characters have been displayed for the screen borders. The
remaining 14 characters are placed at the start of the next line and form the left
screen border.

The calculations for the vertical data. the number of vertical lines. the position of
the vertical synchronization signal. etc.. follow a similar scheme. The first
calculation is the number of raster lines per screen. This results from the division

465

10. Accessing and Programming the Video Cards PC System Programming

of the number of lines displayed per second by the number of screen refreshes per
second:

Pixels per line 919
+ Pixels per character 8

Characters per line 114

Horizontal scan rate 15.750 KHz
+ Screen refreshes 60 Hz

Raster lines 262

Since the characters in CGA text mode are eight pixels high by eight pixels wide,
we again divide by eight to get the number of text lines per screen:

Raster lines 262
+ Pixels per character 8

Lines per screen 32

This result must be decremented by one and then loaded into the fifth register of
the CRTC. The number of displayed lines is loaded into the seventh register. Since
seven fewer lines are displayed than are actually available, these extra lines are used
for the vertical beam return and overscan, whereby the vertical beam return begins
after the 28th line.

The character height must be decremented by one and loaded into CR TC register
nine. The decrement results is 7 in this example. This value also determines the
range for the values loaded into register ten and eleven. They specify the first and
last raster lines of the screen cursor. The cursor position is determined by the
contents of registers 14 and 15. They refer to the distance of the character from the
upper left comer of the screen, instead of line and column. This value is calculated
by multiplying the cursor line by the number of columns per line and then adding
the cursor column. The high byte of the result must be loaded into register 14 and
the low byte in register 15.

The video RAM area

The contents of registers 12 and 13 determine the area of video RAM displayed on
the screen. To understand these registers, we first need to know something about
the way video RAM is organized.

The third component of the video system determines what will eventually be
displayed on the screen. In text mode, the video RAM contains the ASCII codes of
the characters to be displayed and their attributes. While the organization of video
RAM in this mode is identical for all of the video cards discussed here, the
organization for graphic mode varies from card to card. The description of each card
discusses the way video RAM organizes graphic modes (more on this later).

466

Abacus 10.1 AnIIlomy ofa Video Card

As the illustration below shows, each screen position occupies two bytes in video
RAM. The ASCII code of the character to be displayed is placed in the flISt of
these two bytes, the one with the even address. By using eight bits per character
code, a maximum of 256 different characters can be displayed.

RAM
ocmoooo-_...,

25 Charoact ••r.___

Attribute

Normal text mode structure in video RAM

After the ASCII code, and always at an odd offset address, follows the attribute
byte, which defmes the appearance of the character on the screen. The attribute
controller divides it into two nibbles, whereby the upper nibble (bits four to seven)
describes the character background, and the lower nibble (bits zero to three)
describes the character foreground. This results in two values between zero and
fifteen which are interpreted depending on the type of monitor attached. With a
color monitor (and a CGA or EGA card) both values select one of 16 possible
colors. Each character on the screen can thus have its own foreground and
background colors.

A monochrome monitor cannot display colors, regardless of the adapter. Here the
attribute controls whether the character is displayed at high or low intensity,
inverse, or underlined.

467

10. Accessing and Programming the Video Cards 	 PC System Programming

Character 	organization in video RAM

To access video RAM, you must know how the individual characters are organized
within this memory. This organization is similar to character display on the
screen.

The fIrst character on the screen (the character in the upper left comer) is also the
frrst character in video RAM, located at offset position OOOOR. The next character
to the right is located at offset position 0002R. All 80 characters of the frrst screen
line follow in this manner. Since each screen character takes two bytes of memory,
each line occupies 160 bytes of RAM. The fust character of the second screen line
follows the last character of the frrst line, and so on.

Finding character locations in video RAM

You can easily fInd the starting address of a line within video RAM by
multiplying the line number (starting with zero) by 160. To get from the
beginning of the line to a character within the line, the distance of the character
from the start of the line must be added to this value. Since each character takes
two bytes, this is done simply by multiplying the column number (also starting at
zero) by two. Adding both products together yields the offset position of the
character in the video RAM. These calculations can be combined into a single
formula:

Offset_position (row, column) = row * 160 + column * 2

Note: 	 Since only 40 characters per line are displayed in 40-column video
modes, the factor 80 must replace the original 160.

The RAM memory of the video card is integrated into the normal RAM of the PC
system, so you can use normal memory access commands to access video RAM.
You must know the segment address of video RAM, which is used together with
the formula above to fInd the offset position. Section 10.7 shows how this can be
done easily in assembly language, BASIC, Pascal, and C.

Now that we have discussed the most important similarities between the four video
cards, the following four sections describe the capabilities of these cards. In
addition, these sections explain how these capabilities can be used for optimal
screen output

468

Abacus 10.2 The IBM Monochrome Card

10.2 The IBM Monochrome Card

The IBM Monochrome Display Adapter, or MDA, is probably the oldest of the
video cards. This card is based on the Motorola 6845 video controller, which is an
intelligent peripheral chip. The 6845 controller constructs a display by generating
the proper signals for the monitor from video RAM.

This card is excellent for text display. This is achieved with a 9x14 character
matrix, which pennits high-resolution character display. The format of this matrix
is unusual since a character generator containing the bit pattern of each character
can only produce characters 8 pixels wide. Characters from the IBM character set
may not connect with each other (e.g., using box characters to draw a box). A
circuit on the graphics card sidesteps this disadvantage by copying the eighth pixel
of the line into the ninth pixel for any characters whose ASCn codes are between
BOH and DFH. This allows the horizontal box drawing characters to connect

~
Column 0 1 2 3 4 5 6 7 8

Row
0

1

2

3

4

5
6

7

8

9

10

11

12

13

Coding stored In ROM character set

Monochrome display adapter-9x14 character matrix

The character generator requires one byte for each screen line: one bit per pixel,
eight bits per line. Each character requires 14 bytes. The complete character set has
a memory requirement of almost 4K, stored in a ROM chip on the card. For some
reason the card has an 8K ROM, leaving the second bank of4K unused.

Video RAM on the MDA

The video RAM of the card starts at address BOOO:()()()() and extends over 4K (4,096
bytes). Since the screen display only has space for 2,000 characters and requires

469

10. Accessing and Programming the Video Cards PC System Programming

only 4,000 bytes of memory for those characters, the unused 96 bytes at the end of
video RAM are available for other applications.

The following figure shows the meanings of the different values representing the
attribute byte:

7 6 5 4 3 2 1

Character color

Character Intensity
I.-------/O=normal

1 =hlgh Intensity
Back round color

Blinking (or background
1....------------IO=off Intensity)

1=on

Attribute byte valuer-lBM monochrome display adapter

Any combination of bits can be loaded into this byte. However, the MDA only
accepts the following combinations:

7 6 5 3 2 1

? 0 0 0 ? 0 0 0 No character (black on black)

? 0 0 0 ? 0 0 1 underlined character (white on black)

? 0 0 0 ? 1 1 1 White character on black

? 1 1 1 ? 0 0 0 Black character on white (inverse)

? 1 1 1 ? 1 1 1 No character (white on white)

Byte combinationr-lBM monochrome display adapter

Besides these bit combinations, bits 3 and 7 of the attribute byte can be set or
unset. Bit 3 defines the intensity of the foreground display. When this bit is set,
the characters appear in higher intensity. Bit 7's purpose varies with the contents
of the control registers (more on this later). For now, all you need to know is that

470

Abacus 10.2 The IBM Monochrome Card

bit 7 can either enable blinking characters, or enable an intensity matching the
background color.

Monochrome cards have two more registers available: the control register and the
status register.

7 6 5 4 3 2 1 Obit

L Always 1

O=Screen off
1=Screen on

Bit 7 of the attribute
byte:
O=brlght background
1=bllnklng

Control register

MDA control register

The control register located at port 3B8H controls the monochrome display
adapter's different functions. As the figure below shows, only bits 0, 3 and 5 are of
importance. Bit °controls the resolution on the card. Although the card only
supports one resolution (8Ox25 characters), this bit must be set to 1 during system
initialization. Otherwise the computer goes into an infinite wait loop. Bit 3
controls the creation of a visible display on the monitor. If bit 3 is set to 0, the
screen is black and the blinking cursor disappears. If bit 3 is set to 1, the display
returns to the screen. Bit 5 has a similar function: If bit 7 in the attribute byte of
the character is set to 1, it enables blinking characters. If bit 7 contains the value
0, the character appears, unblinking, in front of a light background color. This
means that bit 7· of the attribute byte acts as an intensity bit for the background.
This register can only be written. This makes it impossible for a program to
determine whether the display is turned on or off. The normal value for this
register is 29H, meaning that all three relevant bits default to 1.

471

10. Accessing and Programming the Video Cards 	 PC System Programming

7 	 6 5 4 3 2 1 Obit

L 	 Horizontal
synchronization
signal: 0=01f, 1=on
O=Current pixel off
1=Current pixel on

Status registers (3BAH)

MDA status register

Only bits 0 and 3 are used in the status register; all the other bits must contain the
value 1. Unlike the control register, programs can read this register, but register
contents cannot be changed by program code.

Horizontal synchronization

Bit 0 indicates if a horizontal synchronization signal is being sent to the display
screen. The video card sends this signal after creating a screen line (not to be
confused with a text line, which consists of 14 screen lines) on the screen. This
signal informs the electron gun, which "draws" the picture on the screen, that it
should return to the left border of the current screen line. In this case the bit has
the value 1. Bit 3 contains the value of the pixel where the electron beam is
currently located. A 1 signals that the pixel is visible on the screen and 0 means
that the screen remains black at this location.

MDA internal registers

Besides the two registers directly connected to the hardware of the monochrome
display adapter, the 6845 video processor contains a series of internal registers.
These 18 registers are open to user access through the 6845 index register and data
register. The index register is connected to port address 3B4H, the data register at
port address 3B5H. You can only write to the 6845 registers-you cannot read data
from them.

When you enter a value into one of the 18 registers, the number of the. register (0
17) passes first into the index register. Then the value which is transmitted to the
register passes into the data register. The 6845 then transmits the indicated value to
the proper register. Most of these 18 registers should not be modified, since they
contain impottant data about the screen structure (e.g., synchronization signals)
and incorrect values in these registers can damage the monitor. The following table
shows the meanings of the individual registers and the values which ensure a
correct display.

472

Abacus 10.2 Tile IBM Monoclvome Card

Registers of the CRTC register in BOx2S text mode
on the Monochrome Display Adapter (MDA)
ReQ. Meaning Content
OOH Total horizontal character <fI
OlH Displav horizontal character 8J
02H Horizontal synchronization signal after ••• char 82
03H Duration of horizontal synchronization siernal in char. 15
04H Total vertical character 2i
OSH Adjust vertical character 6
06H Display vertical character 2i
07H Vertical synchronization siqnal after ••• char 2i
OBH Interlace mode 2
09H Number of scan lines per screen line 13

OAH Startil'l9' line of blinking screen cursor 11
OBH Ending line of blinking screen cursor 12
OCH Startinq address of displayed screen paqe (low byte) 0
ODH Startinq address of displayed screen paqe (high byte) 0
OEH Character address of blinking screen cursor (hig-h~te) 0
OFH Character address of blinking screen cursor (low byte) 0
lOH Light pen position (high byte) *
llH Light pen position (low byte) *

*not available on MDA

The following program makes full use of the monochrome display adapter's
capabilities. It was written in assembly language. The individual routines are fully
documented and require no additional explanation. The demonstration program built
into the listing shows practical application of the individual routines.

Assembler listing: VMONO.ASM

; •• **•••**.***••••••••******••••*** •••• *****••••••••••*····****··*****i
;* VMONO *;

;.----------------------~--*;
;* Task : makes some elementary functions available for *;
;* access to the monochrome display screen *;
;*---*;
;* Info : all functions subdivide the screen * ;
;* into columns 0 to 79 and lines 0 to 24 * ;
;*---*;
;* Author MICHAEL TISCHER * ;
;* Developed on : 8/11/87 * ;
;* Last Update : 6/14/89 * ;

;*---*;
;* assembly : MASK VMONO; *;
;* LINK VMONO; *;
;*---*;
;* Call : VMONO *;
; ••••*.*****.** ••**********************.*••••••***••••*•••************;

;=- Constants =======-------==-------======-===-----==~==============

CONTROL REG - 03B8h ;Control register port address
ADDRESS-6845 - 04B4h ;6845 address register
DATA 6845 - 03B5h ;6845 data register
VIO_SEG - OBOOOh ;Segment address of video RAM
CUR START - 10 ;Register • CRTC: Starting cursor line
CUR END -11 ;Register • CRTC: Ending cursor line
CURPOS HI ;Register • CRTC: CUrsor pos. hi byte- 14
CURPOs::)..o - 15 ;Register • CRTC: Cursor pos. 10 byte

DELAY - 20000 ;Counter for delay loop

473

10. Accessing and Programming the Video Cards 	 PC System Programming

i- Stack --------------------------------------

stack 	 segment para stack iDeflnltlon of stack segment

dw 256 dup (1) ; 256-word stack

stack 	 ends ;End of stack segment

;- Data ---------------------------------------

data 	 segment para 'DATA' ;Define data segment

;- the Data for the Demo-Proqram -----------------------

strl db -a" ,0
str2 db • >PC SYSTEM PROG~ING< ., °
str3 db· window 1 ·,0
str4 db· window 2 ·,0
str5 db • the program is stopped by •

db • pressing a Key.... ·,0

initm 	 db 13,10,·VHONO (c) 1987 by Michael Tischer·,13,10,13,10
db ·This demonstration proqram only runs with •
db • a monochrome·,13,10,·display card. If your PC •
db ·has another type of display card,·,13,10
db ·please enter <s> to stop the •
db • program.·,13,10,·Otherwise press any·
db ·key to start ·,13,10

db ·the proqram ••• ·,13,10,·$·

i-- Data -===--~---~-=-=-=------=---==------====----------==----------
linen 	 dw 0*160,1*160,2*160 iStart addresses of the lines as

dw 3*160,4*160,5*160 ioffset addresses in the video RAM
dw 6*160,7*160,8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160
dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160,24*16°

data 	 ends ;End of data segment

i-- Code ----=-------------==-==-----------------------
code 	 segment para 'CODE' iDefinition of the CODE segment

assume cs:code, ds:data, es:data, ss:stack

;= this is the Demo-Program -~=~------=-~-----=-==----=

demo 	 proc far

mov ax,data ;Get segment address of data segment
mav ds,ax ;and load into DS
mov es,ax i as we1l as ES

i-- Display initial msg./wait for input ---------------

mov ah,9 ;String output function
mov dX,offset initm ;Address of initial message
int 21h ;Call DOS interrupt 21H

xor ah,ah ;Get function number for key
int 16h iCall BIOS keyboard interrupt
cmp aI, ·s· ;was <s> entered?
je ende ;YES --> end program
cmp al,·S" iwas <S> entered?
jne startdemo iNO --> start demo

ende: 	 mov aX,4cOOh iFunction number for proqram end
int 21h ;Call DOS interrupt 21H

474

10.2 Tile IBM Monoclvome Card

startdemo label near
mov ex,OdOOh ;Enable full cursor
call cdef
call cIs ;Clear screen

;-- Fill screen with ASCII characters ------------

demo1:

derno2:

arrow:
arrowO:

arrow1:

xor di,di
mov si,offset str1
mov cx,2000
mov al,07h
call print
inc str1
jne demo2
inc str1
loop demo1

;Start in upper left corner
;Offset address of string1
;2,000 characters fit on the screen
;white letters on black background
; Display string
;Increment character in test string
;NUL code suppressed

;Repeat output

;-- Create window 1 and window 2 ---------

mov bx,0508h
mov dx,1316h
mov ah,07h
call clear
mov bX,3C02h
mov dx,4A10h
call clear
mov bX,0508h
call calo
mov si,offset str3
mov ah,70h
call print
mov bX,3C02h
call calo
mov si,offset str4
call print
xor di,di
mov si,offset str5
call print

;-- Display program logo

mov bx,lEOCh
call calo
mov si,offset str2
mov ah,OFOh
call print

;-- Fill window with

xor ch,ch
mov bl,l
push bx
mov di,offset
mov cl,15
sub cl,bl
shr cl,l
or cl,cl
je arrow1
mov al," ..
rep stosb
mov cI,bl
mov al,"·
rep stosb
mov cl,15
sub cI,bl
shr cl,l
or cl,cl
je arrow2
mov al,· ..

;Upper left comer of window 1
; Lower right corner of window 1
;White letters, black background
; Clear window 1
; Upper left comer of window 2
; Lower right corner window 2
;Clear window 2
; Upper left comer of window 1
;Convert to offset address
;Offset address string 3
;Black characters, white background
;Display string 3
;Upper left comer of window 2
;Convert to offset address
;Offset address string 4
;Display string 4
;Upper left display corner
;Offset address string 5
;Display string 5

;Column 30, line 12
;Convert offset address
;Offset address string 2
;Inverse blinking
;Display string 2

arrows

;Hi-byte of the counter to °
;Asterisk
;Push BX on the stack

str3 ;Draw arrow line in string 3
;Total of 15 characters in a
;Calculate number of spaces
;Divide by 2 (for left half)
;No blanks ?
; YES --> ARROW1

;Draw blanks in string 3

line

;Number of asterisks in counter

;Draw stars in string 3
;Total of 15 characters in a line
;Calculate number of blanks
;Divide by 2 (for right half)
;No blanks?
;YES --> ARROW2

475

10. Accessing and Programming the Video Cards 	 PC System Programming

rep stosb ;Draw blanks in string 3
arrow2: 	 mov bx,0509h ;below the first line of window I

call calo ;Convert to offset address
mov si,offset str3 ;Offset address string 3
mov ah,07h ;White characters, black background
call print ;Display string 3
mov bx,3CIOh ;into the lowest line of window 2
call calo ;Convert offset address
call print ;Display string 3

;-- Brief pause ---------------------------------------

mov ex, DELAY ;Loop counter
waitlp: loop waitlp ;Count loop to 0

;-- Scroll window 1 line down -------------------------

mov bx,OS09h ;Upper left corner of window
mov dx,1316h ;Lower right corner window 1
mav cl,l ; Scroll down
call scrolldn lone line

;-- Scroll window 2 one line up -----------------------

mov bx,3C03h ;Upper left corner window 2
mav dx,4AI0h ;Lower right corner window 2
call scrollup ;Scroll up

;-- Was a key pressed? (end program) ------------------

mov ah,l ;Function number for testing key
int 16h ;Call BIOS keyboard interrupt
jne end it ;Keypress -> goto end of program

;-- NO, display next arrow ----------------------------

pop bx ;Pop BX from stack again
add bl,2 ;2 more stars in next line
cmp bl,l? ; Reached 17 ?
jne arrowO ;NO --> next arrow
jrnp arrow ;No key --> next arrow

;-- Get ready to end program

xor ah,ah ;Get function number for key
int 16h ;Call Blos-keyboard-interrupt
mov ex,OOOCh ;Restore normal cursor
call cdef
call cls iClear screen
jmp ende ;Go to end of program

demo 	 endp

i== Functions ====--===---============-----==-====-===========-=

;-- SOFF: switches the display off ----------------------
;-- Input none
;-- OUtput none
;-- register AX and OX are changed

SOFF 	 proc near

mov dx, CONTROL REG ;Address of display control register
in al,dx - ; read its content
and al,11110111b ;bit 3 - 0: display off
out dx,al ;set new value (display off)

ret 	 ;back to caller

SOFF 	 endp

476

Abacus 10.2 The IBM Monochrome Card

;-- SON: switches the display on ------------------------
;-- Input none

;-- Output none

; -- register AX and OX are changed

SON proc near

mov dx, CONTROL REG ;Address of display control register
in al,dx - ; Read its content
or aI,S ;Bit 3 - 1: display on
out dx,al ;Set new value (display on)
ret ;Back to caller

SON endp

;-- COEF: sets the start and end line of the cursor ------------
;-- Input CL - Start line

;-- CH - End line

, Output none
;-- register : AX and OX are changed
cdef proc near

mov aI, CUR START ;Register 10: start line

mov ah,cl - ;Start line to AH

call setvk ;Transmit to video controller

mov aI, CUR END ;Register 11: end line

mov ah,ch ;End line to AH

jmp short setvk ;Transmit to video controller

cdef endp

i-- SETBLINK: sets the blinking display cursor -------------------
i-- Input 01 ~ offset address of the cursor
;-- OUtput none

register BX, AX and OX are changed

setblink proc near

mov bx,di ;Transmit offset to BX
mov al,CURPOS_HI ;Register 15:Hi-byte of cursor offset
mov ah,bh ;HI-byte of the offset
call setvk ;Transmit to video controller
mov al,CURPOS_La ;Register 15:Lo-byte of cursor offset
mov ah,bl ;Lo-byte of the offset

;-- SETVK is called automatically -----------------------

setblink endp

;-SETVK: sets a byte in one of the registers of the video controller -
;-- Input AL - number of the register
;-- AH - new content of the register
i-- Output none
;-- register : OX and AL are changed

setvk proc near

mov dx,ADDRESS 6845 ;Address of the index register
out dx,al ;Send number of the register

jmp short $+2 ;Small 110 pause

inc dx ;Address of the index register

mov al,ah ;Content to AL

out dx,al ; Set new content

ret ; Back to caller

setvk endp

;-- GETVK: reads a byte from one register of the video controllers
;-- Input : AL ~ number of the register

477

10. Accessing and Programming the Video Cards PC System Programming

;-- Output AL - content of the register
;-- register OX and AL are changed

getvk proc near

rnov
out
jmp
inc
in
ret

getvk endp

;-- SCROLLUP:
;-- Input
i-
;-
i-
;-

dx, ADDRESS 6845 ;Address of the index register
dx,al

short $+2
dx
al,dx

;Send number of the register

;Address of the index register
;Read content to AL
; Back to caller

scrolls a window up by N lines
BL - line upper left
BH - column upper left
OL - line lower right
OH - column lower right
CL = number of lines to scroll

i-- Output none
;-- register only FLAGS are changed
i-- Info

scrollup

supl:

the display lines released are erased

proc near

cld

push ax
push bx
push di
push si

push bx
push ex
push dx
sub dl,bl
inc dl
sub dl,cl
sub dh,bh
inc dh
call calo
mov si,di
add bl,cl
call calo
xchg si,di
push ds
push es
mov ax,VIO_SEG
mov ds,ax
rnov es,ax
rnov ax,di
mov bX,si
rnov cl, dh
rep movsw
rnov di,ax
rnov si,bx
add di,160
add si,160
dec dl
jne supl
pop es
pop ds
pop dx
pop ex
pop bx
rnov bl, dl
sub bl,cl
inc bl
rnov ah,07h

;Increment on string instructions

;Push all changed registers on the
;stack
iln this case the sequence
;must be observed!

;These three registers are restored
;from the stack before ending

;Calculate the number of lines

;Deduct number of lines scrolled
;Calculate number of columns

;COnvert upper left in offset
;Record Address in SI
;First line in scrolled window
;Convert first line to offset
;Exchange SI and DI
;Store segment register on
;the stack
;Segment address of the video RAM
ito OS
land ES
;Record DI in AX
;Record S1 in BX
;Number of column in counter
;Move a line
;Restore DI from AX
;Restore SI from BX
; Set next line

;Processed all lines?
iNO --> move another line
;Get segment register from
;stack
;Get lower right corner
;Read number of lines
;Get upper left corner
;Lower line to BL
;Deduct number of lines

;Color : black on white

478

Abacus 10.2 The IBM Monochrome Card

call clear ;Erase lines freed

pop si ;CX and OX have already

pop di ;been read

pop bx

pop ax

ret ;Back to caller

scrollup endp

;-- SCROLLDN: scrolls a window down N lines --------------
;- Input BL - line upper left
i- BH - column upper left
;- OL - line lower right
;-- OH - column lower right
;-- CL - number of lines to scroll
;-- Output none
;-- register only FLAGS are changed
;-- Info display lines released are erased

scrolldn proc near

cld ;Increment on string instructions

push ax ;Store all changed registers on the
push bx ; stack
push di ; In this case the sequence
push si ;must be observed

push bx ;These three registers are returned
push ex ;from the stack before the end
push dx ;of the routine

sub dh,bh ;Calculate the number of the column
inc dh
mov al,bl ;Record line uppsr left in AL
mav bl,dl ;Line uppsr right to line upper left
call calo ;Convert upper left into offset
mav si,di ;Record address in SI
sub bl,cl ;Deduct number of lines to scroll
call calo ;Convert uppsr left in offset
xchg si,di ;Exchange SI and OI
sub dl,al ;Calculate number of lines
inc dl ;Oeduct number
sub dl,cl ;of lines to be scrolled
push ds ;Push segment register onto stack
push es
mov ax,VIO_SEG ; Segment address of video RAM
mav ds,ax ;to OS
mov es,ax ;and ES

sdn1: mov ax,di ;Move OI to AX
mov bx,si ;Move SI to BX

mav cl,dh ;Number column in counter

rep movsw ;Scroll one line

mov di,ax ;Get OI from AX

mav si,bx ;Restore SI fran BX

sub di,160 ; Set next line

sub si,16O

dec dl ;All lines processed ?

jne sdn1 ;NO --> scroll another line

pop es ;Get segment register fran

pop ds ; stack

pop dx ;Retum lower right comer

pop ex ;Return number of lines

pop bx ;Return upper left comer

mav dl,bl ;Upper line to OL

add dl,cl ;Add number of lines

dec dl

mav ah,07h ;COlor : black on white

479

10. Accessing and Programming the Video Cards 	 PC System Programming

call clear ;Erase lines which were released

pop si ;CX and DX are
pop di ; already returned
pop bx
pop ax

ret 	 ;Back to caller

scrolldn 	 endp

;-- CLS: Clear the complete screen ------------------------------
;-- Input : none
; -- Output : none
;-- register : only FLAGS are changed

cIs proc near

mov
xor
mov

ah,07h
bx,bx
dx,4Fl8h

;Color is white on black
;Upper left is (0/0)
;Lower right is (79/24)

i-- Execute Clear

cls endp

;-- CLEAR: fills a designated display with space characters ---
;-- Input AH - Attribute/color
;-- BL = line upper left
;-- BH = column upper left
;-- DL - line lower right

DH ~ column lower right
output none
register : only FLAGS are changed

clear 	 proc near

cld ;Increment on string instructions
push cx ;Store all registes which
push dx ;are changed on the stack
push si
push di
push es
sub dl,bl ;Calculate number of lines
inc dl
sub dh,bh ;Calculate number of columns
inc dh
call calo ;Offset address of upper left corner
mov cx,V10_SEG ;Segment address of the video RAM
mov es,cx Ito ES
xor ch,ch ;Hi-bytes of the counter to 0
mav al,1IIII ; Space characterH

clear1: 	 mov si,di ;Move DI to S1
mov cl,dh ;Number of column in counter
rep stosw ;Store space character
mov di,si ;Restore DI from S1
add di,160 ;Set in next line
dec dl ;All lines processed
jne clearl ;NO --> erase another line

pop es ;Restore registers from
pop di ;stack
pop si
pop dx
pop ex
ret ;Back to caller

clear 	 endp

;-- PRINT: outputs a string on the Display -------------------

480

Abacus 	 10.2 The IBM Monochrome Card

, Input AH - Attribute/color
i-- DI - offset address of the first character
;- SI - offset address of the strinq to DS
i-- OUtput 01 points behind the last character output
;-- reqister AL, DI and FLAGS are chanqed
;- Info the strinq must be terminated with a NUL-character.
;-- other control characters are not recoqnized

print 	 proc near

cld ;Increment on strinq instructions
push si ;Store SI, DX and ES on the stack
push es
push dx
mov dx,VIO_SEG ;Segment address of the video RAM
mov es,dx ;First to OX and then to ES
jmp printl ;YES --> Output finished

printO: 	 stosw ;Store attribute and color in V-RAM
printl: 	 lodsb ;Get next character from the strinq

or al,al ;Is it NUL
jne printO ;NO --> output

printe: 	 pop dx ;Get SI, DX and ES back from stack
pop es
pop si
ret ; Back to caller

print 	 endp

;- CALC: converts line and column into offset address --------------
;-- Input BL = line
i-- BII - column
i-- Output DI - the offset address

Reqisters: 01 and FLAGS are chanqed

calo 	 proc near

push ax ;Store AX on the stack
push bx ;Store BX on the stack

shl bx,l ;Column and line times 2
mov al,bh ;Column to AL
xor bh,bh ;Get Hi-byte
mov di, [linen+bx] ;Offset address of the line
xor ah,ah ;HI-byte for column offset
add di,ax ;Add line- and column offset

pop bx ;Get BX from stack aqain
pop ax ;Get AX from stack aqain
ret ; Back to caller

calo 	 endp

;== End =========~--========--======---====================~

code 	 ends ;End of the CODE segment
end demo ;Start program execution w/ demo

481

10. Accessing and Programming the Video Cards PC System Programming

10.3 The Hercules Graphic Card

The Hercules display adapter displays text in both text mode and graphics mode,
with a graphic resolution of 72Ox348 pixels. This card contains enough RAM for
two display pages. Each display page is 32K, so video RAM can accept a 4K text
page and a graphic page. The frrst display page extends from address BOOO:OOOO to
BOOO:7FFF. The second screen page goes from BOOO:8000 to BOOO:FFFF.

Hercules video RAM

The Hercules card's video RAM in text mode has the same cursor character and port
addresses as the mM monochrome display adapter. With the graphic capabilities,
only a few bits in the status and control register are different from the monochrome
card. An additional configuration register can be addressed from 3BFH. You can
write to this register only. Only bits 0 and 1 are of interest to the programmer.
The former indicates whether the graphic mode can be switched on (1) or not (0).
Bit 1 determines whether the second display page can be used. Bit 1 contains the
value 1 if the second page is usable.

To avoid conflicts with other video cards (especially color cards), both bits are set
to 0 at the start of the system so that neither graphic mode nor the second display
page are accessible at first. Application programs must configure the Hercules
display adapter through the configuration register if the programs require graphic
mode or the second screen page.

The control register of the Hercules graphic card has some differences from that of
the MDA discussed in the preceding section.

7 6 5 4 3 2 1 Obit

'-............ O=text mode
hlc mode

O=screen off
......------11=screen on

O=bllnklng disabled
"---------11=bllnklng enabled

O=dlsplay screen
page 1

1 =dlsplay screen
2

The Hercules control register (3B8H)

482

Abacus 103 The Herclllu Graphic Card

Unlike the IBM monochrome dispJay adapter, bit 0 is unused and doesn't have to
be set to 1 during the system boot Bit 1 determines text or graphic mode: a 0 in
bit 1 enables text mode, while a 1 in bit 1 enables graphic mode. As you shall see
in the following examples, changing these bits isn't enough to switch between
text and graphic modes. The internal registers of the 6845 must be reset as well.
During this process,the screen display must be switched off to prevent the 6845
from creating gatbage during its reprogramming.

The Hercules card has a seventh bit in this register. Its contents determine which of
the two screen pages appear on the monitor screen. If this bit is 0, the first screen
page appears; a 1 calls the second screen page on the screen. Independent of each
other, the user can write to or read from either page at any time. You can only
write to this register; attempts to read this register return the value FFH. Because
of this, it is impossible to switch off the display simply by reading the contents of
the status register and erasing bit 3, regardless of the dispJay mode and the screen
page selected.

7 6 5 4 3 2 1 Obit

L Horizontal
synchronization
signal: O=off, 1=on
O=Current pixel off
1=Current pixel on

Vertical
synchronization
slgnal: O=on, 1 =off

Hercules status register (3BAH)

Only the significance of bit 7 makes this register different from the IBM
monochrome card. It's always set to 0 when the 6845 sends a vertical
synchronization signal to the display. This signal is always sent when the last
screen line has been constructed. The electron beam, which constructs the display,
then jumps to the fJrSt line of the screen to start constructing a new screen.

Since the Hercules card uses the same processor as the IBM card, the internal
registers of the 6845 and their meaning are identical to the IBM card. The index
register and data register are also located at the same address. The following values
must be assigned to the various registers in the text and graphic modes
respectively:

483

10. Accessing and ProgrOlll11ling ,11£ Video Cards PC System ProgrOlll11ling

No. Meaning Text Graphic
0 Horizontal character seeded fJ1 53
1 Horizontal character displayed 00 45
2 Horiz. synchronization signal after•.character 82 46
3 Horiz. ~chronization signal width 15 7
4 Vertical character seeded 25 91.
5 Vertical character justified 6 2
6 Vertical character displayed 25 ffI
7 Vert. synchronization signal after•.character 25 ffI
8 Interlace mode 2 2
9 Number of ccan-lines per line 13 3
10 Starting line of blinkinq cursor 11 0
11 Ending line of the blinking cursors 12 0
12 High byte of screen paqe startil'lg address 0 0
13 Low byte of screen page starting address 0 0
14 Hiqh byte of blinking cursor char. address 0 0
15 Low byte of blinking cursor char. address 0 0
16 Reserved
17 Reserved

As mentioned earlier, the Hercules card in graphic mode provides 348x720
resolution. Every pixel on the screen corresponds to one bit in the video RAM. If
the corresponding bit contains the value 1, the dot is visible on the display,
otherwise it remains dark. The following figure shows the construction of the
video RAM in the graphic mode.

484

Abacus 103 The Hercllles Graphic Card

+0000 (h) Line 0 (90 bytes)

+OOSA(h) Lin. 4 (90 byt••)

+0084 (h) Line' (90byt••)

+lD88 (h) Line 33' (90 byt••)

+lD1:2 (h) Line 340 (90 byt••)

+lJ:3c (h) Line 344 (90 byt••)

+U96(h) unuaed (362 byt••)

+2000 (h) Lifte 1 (90 byt••) RAM
+20SA(h) Line 5 (90 tea)

+2084 (h) Line 9 (90 bytes)

0000:0000

+3088 (h) Line 331 (90 byte.)

+3DE2 (h) Line 341 (90 bytes)

+3E1C(h) Line 345 (90 bytes)

+3E96 (h) unused (362 bytes) 1
+4000 (h) Line 2 (90 bytes)

+405A (h) Line' (90 byte.)

+4084 (h) Line 10 (90 bytes)

+SD88 (h) Line 33. (90 byt••)

+SDE2(h) Line 342 (to byt••)

+SE3C(h) Line 34' (90 byt••)

+SE96 (h) unused (362 byt••)

+6000 (h) Line 3 (90 byt••)

+60SA(h) Line 7 (90 byt••)

+6084 (h) Line 11 (90 byte.)

+7088 (h) Line 339 (90 byte.)

+1DE2 (h) Line 343 (90 bytes)

+7E3C (h) Line 347 (90 bytes)

+1£96 (h) unused (362 bytes)

+8000 (h)

Video RAM and the screen under construction

The bit patterns of the individual lines in the video RAM aren't arranged
sequentially, as you might have assumed. The 32K of video RAM is divided into
four 8K blocks. The fIrst block contains the bit pattern for any lines divisible by 4
(0,4,8, 12, etc.). The second block contains the bit patterns for lines 1,5,9, 13
etc. The third block contains the bit patterns for lines 2, 6, 10, 14, etc., while the
last block contains lines 3, 7, 11, 15 etc. When the 6845 generates a display, it
obtains information for screen line zero from the fIrst data block, screen line one
from the second data block, etc. Mter it has obtained the contents of the third
screen line from the fourth data block, it accesses the fIrst data block again for the
structure of the fourth line. Each line requires 90 bytes within the individual data
blocks-every pixel requires a bit, and 720 pixels divided by 8 bits (per byte)
equals 90. The fIrst 90 bytes in the first memory area provide the bit pattern for
screen line zero, and the 90 bytes following provide the bit pattern for the fourth
screen line. The zero byte of one of these 9O-byte sets represents the fIrst eight
columns of a screen line (columns 0-8). The first byte represents columns 8-15,

485

10. Accessing and Programming tM Video Cards 	 PC System Programming

etc. Within one of these bytes, bit 7 corresponds to the left screen pixel and bit 0
corresponds to the right screen pixel.

RAM

0000:0000

7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0 bit

I I I I I I I I I I I I I I I I I I

Column 0 1 2 3 	 4 5 6 7 Column 712_......_ 719

Relationship between 9O-line bytes and screen display

If the screen pixels of a line (0 to 719) and the screen pixels of a column (0 to
347) are sequentially numbered, an equation indicates the address of the bytes
relative to the beginning of the screen page. This address contains the information
for a pixel with the coordinates X/Y.

To determine the bit within the byte which represents the pixel, the following
formula can be used:

Address = 2000H * (Y mod 4) + 90 * int(Y/4) + int(X/B)

The following program demonstrates the abilities of the Hercules display adapter.
The individual routines within this program have some differences from the
routines shown in the monochrome display adapter demo program from the
previous section. The routines here enable access to both screen pages, and support
the Hercules graphic mode.

Assembler listing: VHERC.ASM

.******************.****************•••***********·*·*·*········*i
V HER C 	 *;

---;
* 	 Task : makes a basic function available for *;

access to the HERCULES GRAPHICS CARD *;
---;

Info : 	 all functions partition the screen display *;
into columns 0-79 and lines 0-24 (text mode) *;
& columns 0-719 and lines 0-347 (graphic mode)*;

---;
Author : MICHAEL TISCHER * ;
developed on : 8/11/87 *;

486

Abacus 	 103 TIte Hercules Graphic Card

;* last update : 6/15/89 	 *;
;*---*i
;* assembly : MASM VHERC; *;
;* LINK VHERC: *;
;*---*i
,call : VHERC 	 *;
i***************·****·*********************····******* ****** •• **** ••• *:

CONTROL REG - 03B8h ;Control register port address
ADDRESS-6845 03B4h ;6845 address reqister
DATA 6845 - 03B5h ;6845 data reqister
CONFIG REG - 03BFh ;Confiquration register
VIO SEG OBOOOh ;Video RAM seqment address
CU(::START - 10 ;Reg. f for CRTC: Start cursor line
CUR END -11 ;Reg. f for CRTC: End cursor line
CURPOS HI - 14 ;Reg. f for CRTC: Cursor pos hi byte
CURPOS-LQ = 15 ;Reg. f for CRTC: CUrsor pos 10 byte

DELAY - 20000 ;Count for delay loop

;== Macros =====-========_____=-=-========-========___ss==

setmode 	 macro modus ;Set control register

mov dx, CONTROL_REG ;Screen control register address
mov al,modus ;Put new mode in AL register
out dx,al ;Send mode to control register

endm

setvk macro ;Write value to CRTC registers
;Input: AL - register number

AH = Value for register

mov dx,ADDRESS_6845 ;Index register address
out dX,ax ;Display register number and new value

endm

i== Stack 	=======--------==-----===-===============------=

stack 	 segment para stack ;Definition of stack segment

dw 256 dup (?) ;Stack is 256 words in size

stack 	 ends ;End of stack segment

;-- Data -====-=-~-=-========--==---=------=---------------==
data 	 segment para 'DATA' ;Define data segment

;=- Data needed for demo program -------==-==--------------=
initm 	 db 13,10,WVHERC (c) 1987 by Michael Tischer·,13,10,13,10

db "This demonstration program runs only with •
db • a HERCULES",13,10,"graphics card. If your PC "
db "has another type of display card, ·,13,10
db ·please input an >s< to stop the •
db • program.",13,10,·Otherwise please press any·
db ·key to start the ·,13,10
db ·program ••• ·,13,10,·$·

strl db 1,17,16,2,7,0
str2 db 2,16,17,1,7,0

domes 	 db 13,10
db -This program creates a short graphic demo -,13,10
db "and a text demo. Pressing a key during the-,13,10

487

10. Accessing and Programming the Video Cards 	 PC System Programming

db ·demo ends the program.·,13,10

db ·Press a key to start the program••• ·,13,10,·S·

;- Table of line offset addresses ---------------

lines 	 dw 0*160,1*160,2*160 ;Beginning addresses of the lines as
dw 3*160,4*160,5*160 ;offset addresses in video RAM
dw 6*160,7*160,8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160
dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160,24*160

grafikt 	 db 3Sh, 2Dh, 2Eh, 07h, SBh, 02h ;Reqister values for the
db S7h, S7h, 02h, 03h, OOh, OOh ;graphic mode

textt 	 db 61h, SOh, S2h, OFh, 19h, 06h ;Reqister values for the
db 19h, 19h, 02h, ODh, OBh, Och ;text mode

data 	 ends ;End of data segment

code 	 segment para 'CODE' ;Definition of the code segment

o/g lOOh

assume cs:code, ds:data, es:data, ss:stack

;- this is only the Demo-Program -------==-=-------
demo 	 proc far

mov ax, data ;Get segment address of data segment
mov ds,ax ;Load into OS
mov es,ax ;and ES

i-- Opening msq., wait for input -------------------

mov ah,9 ;Output function number for string
mov dx,offset initm ;address of the message
int 21h ;Call DOS interrupt

xor ah,ah ;Get function number for key
int l6h ;Call BIOS keyboard interrupt
cmp al,·8· ;Was <s> entered?
je ende ;YES--> End program
cmp al,·S· ;Was <S> entered?
jne startdemo ;NO --> Start demo

ende: 	 mov aX,4COOh ; Function number - end program
int 2lh ;Call DOS interrupt 21H

startdemo 	label near
mov ah,9 ;Output function number for string
mov dx,offset domes ;address of the message
int 21h ;Call DOS interrupt

xor ah,ah ;Get function number for key
int l6h ;Call BIOS keyboard interrupt

;-- Initialize graphic mode -------------------------

mov al,llb ;Graphic and page 2 possible
call config ; Configure
xor bp,bp ;Access display page 0
call grafik ;switch to graphic mode
xor al,al
call cgr ;Erase graphic page 0
xor bx,bx ;Begin in the upper left
xor dx,dx ;Display corner
mov ax,347 ;Vertical pixels

488

Abacus

grl:

gr2:

grl:

gr4 :

grS:

demol:

demo2:

demo3:

mov cx,7l9
push cx
mov cx,ax
push ax
call spix
inc dx
loop gr2
pop ax
sub ax,3
pop cx
push cx
push ax
call spix
inc bx
loop grl
pop ax
pop cx
sub cX,6
push cx
mov cx,ax
push ax
call splx
dec dx
loop gr4
pop ax
sub ax,3
pop cx
push cx
push ax
call splx
dec bx
loop grS
pop ax
pop cx
sub cx,6
crop ax,S
ja grl

xor ah,ah
int l6h

10.3 The Hercules Graphic Card

;Horizontal pixels
;Push horizontal pixels on stack
;Vertical pixels in counter
;Push vertical pixels on stack
;Set pixel
; Increment line
;Draw line
;Get vert. pixels from stack
;next line 3 pixels less
;Get horiz. pixels from stack
;Store horizontal pixels
;Push vertical pixels on stack
;Set pixel
;Increment column
;Draw line
;Get vertical pixels from stack
;Get horizontal pixels from stack
;Next line 6 pixels less
;Record horizontal pixels
;Vertical pixels in counter
;Note vertical pixels on stack
;Set pixel
;Decrement line
;Draw line
;Get vertical pixels from stack
;Next line 3 pixels less
;Get horizontal pixels from stack
;Record horizontal pixels
;Record vertical pixels on stack
;Set pixel
ilncrement column
;Draw line
;Get vertical pixels from stack
;Get horizontal pixels from stack
;Next line 6 pixels less
;Is the vertical line longer than 5
;YES --> continue

;Wait for function nr. for key
;Call BIOS keyboard interrupt

xor bx,bx
call calo
mov si,offset strl
mov cX,l6*25
call print
loop demol

;Start in upper left display corner
;Convert to offset address
;Offset address of stringl
;The string is 5 characters long
;Output string

Display strings in display page 1 -----------------

inc bp
xor bX,bx
call calo
mov si, offset str2
mov cX,l6*25
call print
loop demo2

setmode lOOOlOOOb

;-- Initialize text mode -----------------------------

call text ;Switch on text mode
mov ex,OdOOh ;Switch on full cursor
call cdef
call cls ;Clear screen

;-- Display strings in display page 0 -----------------

;Process display page 1
;Start in the upper left corner
;Convert to offset address
;Offset address of stringl
;string is 5 characters long
;Output string

;Display text page 1

;-- short Pause --

489

10. Accessing and Progrll11l/lUng the Video Cards PC System Progrll11l/lUng

mov cx, DELAY ;Load counter
pause: loop pause ;Count to 65,536

setmode OOOOlOOOb ;Display page 0

;-- short pause
mov cx, DELAY ;Load counter

pausel: loop pausel ;Count to 65,536

mov ah,l ;Test function nr. for key
int 16h ;Call BIOS-keyboard-Interrupt
je demo3 ;No key --> continue

xor ah,ah ;Get function number for key
int 16h ;Call BIOS-keyboard-Interrupt

mov bp,O ;Display page 1
call cIs iClear screen
mov cX,ODOch ;Restore normal cursor
call cdef
call cIs ;Clear screen
jmp ende ;End program

demo endp

;== The actual functions follow ==----=~=====-===-----==--=

;-- CONFIG: configures the HERCULES card -----------------------------
;-- Input : AL : bit 0 - 0 Only text presentation possible
;-- 1 also graphic presentation possible
;-- bit 1 = 0 RAM for display page 2 off
;-- 1 RAM for display page 2 on
;-- Output : none
;-- Register : AX and DX are changed

config proc near

mov dX,CONFIG REG ;Address of configuration register
out dx,al - ;Set new value
ret ; Back to ca ller

config endp

;-- TEXT: switches the text presentation on --------------------------
;-- Input : none
;-- Output : none
;-- Register : AX and DX are changed

text proc near

mov si, offset textt ;Offset address of the register-table
mov bl,OOlOOOOOb ;Display page O,text mode,blinking
jmp short vcprog ;Program video-controller again

text endp

;-- GRAFIK: switches on the graphic mode ------- ---------------------
i-- Input : none
;-- Output : none
;-- Register : AX and OX are changed

grafik proc near

mov si,offset grafikt ;Offset address of the register-table
mav bl,OOOOOOlOb ;Oisplay page 0, graphic mode

grafik endp

;-- VCPROG: programs the video controller ----------------------------
;-- Input SI - address of a register-table

490

Abacus 	 10.3 Tile Hercllles Graphic Card

;- B1 - value for display-control-register
;-- Output none
; -- register AX, SI, BH, OX and FLAGS are changed

vcproq 	 proc near

setmade bl ;Bit 3 - 0: display aus

mav cx,12 ;12 registers are set
xor bh,bh ;Start with register 0

vcp1: 	 lodsb ;Get register value from the table
mav ah,al ;Register value to AH
mav al,bh ;Number of the register to A1
setvk ;Transmit value to the controller
inc bh ;Address next register
loop vcp1 ;Set additional registers

or bl,8 ;Bit 3 - 1: display on
setmade bl ; Set new mode
ret ; Back to caller

vcprog 	 endp

;-- cOEF: sets the start and end line of the cursor-------------------
;-- Input c1 - start line
;-- cH & end line
;-- Output none

register AX and OX are changed

cdef 	 proc near

mav al,CUR START ;Register 10: start line
mov ah,cl ;Start line to AH
setvk ;Transmit to video-controller
mav aI, CUR END ;Register 11: Endline
mav ah,ch ;End line to AH
setvk ;Transmit to video-controller
ret

cdef 	 endp

;-- SETB1INK sets the blinking display cursor ----------------------
i-- Input 01 = offset address of the cursor
;-- Output none
;-- register BX, AX and OX are changed

setblink 	 proc near

mav bX,di ;Transmit offset to ax
mav al,CURPOS HI ;Register 15:Hi Byte of cursor offset
mav ah,bh - ;HI byte of the offset
setvk ;Transmit to video-controller
mav aI, CURPOS 10 ;Register 15:10-Byte of cursor offset
mav ah,bl - ;10 byte of the offset
setvk ;Transmit to CRTC
ret

setbl1nk 	 endp

;-- GETVK reads a byte from one register of the video-controller
i-- Input AL - number of the register
i-- Output AL - content of the register
i-- register OX and A1 are changed

getvk 	 proc near

mav
out

dX,ADDRESS 6845
dX,al -

;Address of the index register
;Send number of the register

jmp $+2 ;Short io pause
inc dx ;Address of the index register

491

10. Accessing and Programming the Video Cards 	 PC System Programming

in al,dx ;Read content to AL
ret ;Back to caller

getvk 	 endp

;-- SCROLLUp: scrolls a window by N lines upward ---------------------
;-- Input BL - line upper left
;-- BH - column upper left
;-- DL - line lower right
;-- DH - column lower right
;-- CL - number of the lines to be scrolled
;-- BF - number of the display page (0 or 1)
;-- OUtput none
;-- register only FLAGS are changed
;-- Info the display lines released are erased

scrollup 	 proc near

cld
push ax
push bx
push di
push si

push bx
push cx
push dx
sub dl,bl
inc dl
sub dl,cl
sub dh,bh
inc dh
call calo
mov si,di
add bl,cl
call calo
xchg si,di
push ds
push es
mov ax,VIO_SEG
mov ds,ax
mov es,ax

supl: 	 mov ax,di
mov bX,si
mov cl,dh
rep movsw
mov di,ax
mov si,bx
add di,160
add si,160
dec dl
jne sup1
pop es
pop ds
pop dx
pop cx
pop bx
mov bl,dl
sub bl,cl
inc bl
mov ah,07h
call clear

pop si
pop di
pop bx
pop ax

ret

;Increment for string instructions
;Store all changed registers
; on the stack
;In this case the sequence
;must be followed

;These three registers are returned
;from the stack before
;the end of the routine
;Calculate number of lines
;Deduct number
;of lines to be scrolled
;Calculate number of columns

;Convert upper left in offset
;Note address in SI
;First line in scrolled window
;Convert first line in offset
;Exchange S1 and D1
;Store segment register
; on the stack
;Segment address of the video RAM
Ito DS
land ES
;Note D1 in AX
; Note SI in BX
;Number of columns in counter
;Move a line
;Restore D1 from AX
;Restore S1 from BX
; Set next line

;Processed all lines ?
;NO --> move another line
;Get segment register from
; stack
;Get lower right corner
;Get number of lines
;Get upper left corner
;Lower line to BL
;Deduct number of lines

;Color : black on white
;Erase liberated lines

;CX and DX have been brought back
; already

;Back to caller

492

Abacus 	 10.3 TM Hercules Graphic Card

scrollup 	 endp

;-- SCROLLDN: scroll a Window by N lines upwards ---------------------
i-- Input BL - line upper left
i-- BH - column upper left
i-- DL - line lower riqht
i-- DH - column lower riqht
, CL - number of the lines to be scrolled
;-- BP - number of the display paqe (0 or 1)
;-- Output none
;-- reqister only FLAGS are chanqed
;-- Info released lines are deleted

scrolldn 	 proc near

cld 	 ;Increment on strinq instructions
\

push ax ;Secure all chanqed reqisters on the
push bx ; stack
push di ;In this case the sequence must
push si ;be followed!

push bx ;These three reqisters are
push cx ;returned from the stack before the
push dx ;end of the routine

sub dh,bh ;Calculate number of columns
inc dh
mov al,bl ;Record line upper left in AL
mov bl,dl ;Line lower riqht top lower left
call calo ;Convert upper left in offset
mov si,di ;Note address in SI
sub bl,cl ;Deduct number of chars to scroll
call calo ;Convert upper left in offset
xchq si,di ;Exchanqe S1 and 01
sub dl,al ;Calculate number of lines
inc dl
sub dl,cl ;Deduct number of lines to scroll
push ds ;Store seqrnent reqister on the
push es ; stack
mov aX,VIO SEG ;Seqrnent address of the video RAM
rnov ds,ax ito OS
mov es,ax ;and ES

sdnl: 	 mov ax,di ;Record 01 in AX
mov bx,si ;Record SI in BX
mav cl,dh ;Number of columns in counter
rep movsw ;Move a line
mov di,ax ;Restore 01 fr~ AX
mov si,bx ;Restore S1 from BX
sub di,160 ; Set next line
sub si,160
dec dl ;All lines processed
jne sdn! ;NO --> move another line
pop es ;Get seqment reqister from
pop ds ; stack
pop dx ;Get lower riqht corner
pop cx ;Get number of lines
pop bx iGet upper left corner
mov dl,bl ;Upper line to DL
add dl,cl ;Add number of lines
dec dl
mav ah,07h ;Color : black on white
call clear ;Erase liberated lines

pop si ;CX and DX have already
pop di ;been read
pop bx
pop ax

ret 	 ;Back to caller

493

10. Accessing and Programming the Video Cards 	 PC System Programming

scrolldn endp

;- cLS: clear the whole screen -------------------------------------
;-- Input BP - number of the display page (0 or 1)
i-- OUtput none
;-- register only FLAGS are changed

cIs 	 proc near

mov ah,07h ;Color is white on black
xor bx,bx ;Upper left is (0/0)
mov dx,4Fl8h ;Lower right is (79/24)

;-- perform clear --

cIs 	 endp

;-- CLEAR: fills a designated display area with space character ------
;-- Input AH - Attribute/color
;-- BL - line upper left
;-- BH - column upper left
;-- DL - line lower right
;-- DK - column lower right
;-- BP - number of the display page (0 or 1)
;-- Output none
; -- register only FLAGS are changed

clear 	 proc near

cld ;Increment on string instructions
push cx ;Secure all changed
push dx ;registers on the stack
push si
push di
push es
sub dl,bl ;Calculate number of lines
inc dl
sub dh,bh ;Calculate number of columns
inc dh
call calo ;Offset address of upper left corner
mov cx,VIO_SEG ;Segment address of the video RAM

mov es,cx Ito ES
xor ch,ch ;Hi byte of the counter to 0
mov al," ;Space characterN

clearl: 	 mov si,di ;Note DI in SI
rnov cl,dh ;Number of columns in counter
rep stosw ;Store space character
rnov di,si ;Restore DI from SI
add di,160 ; Set next line
dec dl ;All lines processed
jne clear1 ;NO --> erase another line

pop es ;Get secured registers
pop di ; from the stack
pop si
pop dx
pop cx
ret ; Back to caller

clear 	 endp

;-- PRINT: outputs a string on the display ---------------------------
;-- Input AH - attribute/color
;-- DI - offset address of the first character
;-- SI = offset address of the strings to DS
;-- BP = number of the display page (0 or 1)
;-- OUtput DI points behind the last character to be output

;-- register AL, DI and FLAGS are changed

;-- Info the string must ne terminated with NUL-character.

494

Abacus 	 103 TM Hercules Graphic Card

i-- other control characters are not recognized

print 	 proc near

cld ;1ncrement on string instructions
push si ;sr, OX and ES to the stack
push es
push dx
mov dX,V10 SEG ;First segment address of video RAM
mav es,dx ;to ox and then to ES
jmp print1 ;Get first character from string

printO: 	 stosw ;Store attribute and color in V-RAM
print1: 	 lodsb ;Get next character from the string

or al,al ;1s it NUL
jne printO ;NO --> output

printe: 	 pop dx ;Get sr, ox and ES from stack again
pop es
pop si
ret ; Back to caller

print 	 endp

;-- cALO: converts line and column into offset address ---------------
;-- Input BL = line
i- BH = column
;-- Bp - number of the display page (0 or 1)
;-- OUtput 01 offset address
; -- register 01 and FLAGS are changed

calo 	 proc near

push ax ;Record AX on the stack
push bx ;Record BX on the stack

shl bx,1 ;Column and line times 2
mov al,bh ;Column to AL
xor bh,bh ;Hi byte
mov di, [lines+bxj ;Get offset address of the line
xor ah,ah ;Hi byte for column offset
add di,ax ;Add lines- and column offset
or bp,bp ;Oisplay page 01
je caloe ;YES --> address ok

add di,BOOOh ;Add 32 KB for display page 1

caloe: 	 pop bx ;Get BX from stack again
pop ax ;Get AX from the stack again
ret ; Back to caller

calo 	 endp

i-- CGR: clear the complete graphic screen ---------------------------
;-- Input BP - number of the display page (0 or 1)
;-- AL - OOH erase all pixels
i-- FFH : set all pixels
;-- Output none
i-- register AH, BX, cX, 01 and FLAGS are changed

cgr 	 proc near

push es iRecord ES on the stack
cbw ; Expand AL to AH
xor di,di ;Offset address in video RAM
mov bx,V10_SEG ;Segment address display page 0
or bp,bp ;Erase page 11
je cgr1 ;NO --> erase page 0

add bX,OBOOh ; Segment address display paqe 1

495

10. Accessing t.md Programming the Video Cards 	 PC System Programming

cgr1:

cgr

;-- SPIX:
;-.... Input
i-
i-
;- Output

mav es,bx
mov cX,4000h
rep stosw
pop es
ret

endp

;Segment address to segment register
;A page is 16K-words
;Fill page
;Get ES from stack
; Back to caller

sets a pixel in the graphic display -------------------------

BP - number of the display page (0 or 1)

BX - column (0 to 719)

DX - line (0 to 347)

none

i-- register AX, DI and FLAGS

spix

spixl:

spix

proc near

push es
push bx
push ex
push dx

xor di,di
mov cX,VIO SEG
or bp,bp
je spixl

mov cX,OBOOh

mov es,cx
mov aX,dx
shr aX,1
shr ax,l
mov cl,90
mul cl
and dx,1lb
mav el,3
ror dx,cl
mov di,bx
mov cl,3
shr di,cl
add di,ax
add di,dx
mov cl,7
and bX,7
sub cl,bl
mov ah,l
shl ah,cl
mov al,es:[diJ
or al,ah
moves: [diJ ,al

pop dx
pop ex
pop bx
pop es
ret

endp

are changed

;Store ES on the stack

;Store ax on the stack

; Store eX on the stack

;Store DX on the stack

;Offset address in video RAM

;Segment address display page °

;Access page 1 ?

;NO --> access page 0

;Segment address display page 1

;Segment address in segment register
;Move line to AX
;Shift line right 2 times
,This divides by four
;The factor is 90
;Multiply line by 90
;AND all bits except for
;3 shifts
;Rotate right (* 2000H)
;Column to DI
;3 shifts
;divide by B
;+ 90 * int(line/4)
;+ 2000H * (line mod 4)
;Maximum of 7 moves
;Column mod B
;7 - column mod B

0 and 1

;Determine bit value of the pixels

; Get 8 pixels
; Set pixel
;Write B pixels

;Get DX from stack
;Get eX from stack
;Get ex from stack
;Get ES from stack
; Back to caller

;== End ===================-=-=====================----========-=======

code 	 ends ;End of the code segment
end demo

496

Abacus 10.4 The IBM Color Card

10.4 The IBM Color Card

The IBM Color/Graphics Adapter (CGA) supports two text modes and three
different graphic modes. Like the other two cards, the CGA is based on a 6845
video processor and is equipped with 16K of video RAM which begins at address
B800:0000.

Text modes

Besides the normal text mode of 25 lines and 80 columns, the CGA also has a text
mode consisting of 25 lines and 40 columns. This 40-column mode displays
characters twice as wide as normal 8O-column mode. CGA characters are displayed
in an 8x8 matrix, which results in a less distinct display than monochrome display
adapter text. The CGA's video RAM assignment is almost identical to that of the
monochrome card. The attribute byte is different from that of the monochrome
display adapter.

7 6 5 4 3 2 lObit

L...---t Character color

Character Intensity
L...-------IO=normal

1 =hlgh Intensity
L...-_______--I Back round color

Blinking
L...------------IO=off

1=on

Color/Graphics Adapter attribute byte

The lower four bits of the attribute byte indicate one of the 16 available colors.
The meanings of the upper four bits depend on whether blinking is active. If it is
active, bits 4 to 6 indicate the background color (taken from one of the first eight
colors of the color palette), while bit 7 determines whether or not the characters
blink. If blinking is disabled, bits 4 to 7 indicate the background color (taken from
one of the 16 available colors).

497

10. Accessing and Programming the Video Cards PC System Programming

Decimal Hexadecimal Binary Color

a a 0000 Black
1 1 0001 Blue
2 2 0010 Green
3 3 0011 Cyan
4 4 0100 Red
5 5 0101 Magenta
6 6 0110 Brown
7 7 0111 Light gray
8 8 1000 Dark gray
9 9 1001 Light blue

10 A 1010 Light green
11 B 1011 Light cyan
12 C 1100 Light red
13 D 1101 Light magenta
14 E 1110 Yellow
15 F 1111 White

Color/Graphics Adapter color palette

Each 80x25 text page requires 4,000 bytes of video RAM. 16K allows a total of
four text pages. The ftrst display page starts at address B800:()()()(), the second at
B800:1000, the third at B800:2000 and the last at B800:3000. The 4Ox25 mode
allows storage of eight display pages, because each display page only requires
2,000 bytes in this mode. The ftrst display page starts at address B800:0000, the
second at B800:0800, the third at B800:1000, etc.

Graphic modes

The eGA supports three different graphic modes, of which only two are usually
used. The color-suppressed mode displays 160xl00 pixels with 16 colors. The
6845 supports this resolution, but the rest of the hardware doesn't offer color
suppressed mode support. The remaining two graphic modes have resolutions of
32Ox200 and 640x200 respectively. The 32Ox200 resolution permits four-color
graphics, while 640x200 resolution only allows two colors.

320x200 resolution

The eGA uses up all 16K of its video RAM for displaying a graphic in 32Ox200
resolution with four colors. This limits the user to one graphic page at a time. Of
the four colors permitted, the background can be selected from the 16 available
colors. The other three colors originate from one of the two user-selected color
palettes, which contain three colors each.

498

Abacu 10.4 The IBM Color Card

Palette 1: Color 1: Cyan Palette 2: color 1: Green
Color 2: Violet Color 2: Red
Color 3: White Color 3: Yellow

Since a total of four colors are available, each screen pixel requires two bits. Four
bits can represent the color numbers (0 to 3). The following values correspond to
the various colors:

o OO(b) = freely selectable background color
1 01{b) = color 1 of the selected palette
2 1O(b) =color 2 of the selected palette
3 11(b) =color 3 of the selected palette

The video RAM assignment in this mode is similar to that of the Hercules card
during graphic display. The individual graphic lines are stored in two different
blocks of memory. The frrst block, which begins at address B800:0000, contains
the even lines (0, 2, 4 ...); the second block, which begins at B800:2000, contains
odd lines (1,3,5).

RAM
0000:0000

Video RAM assignment in graphic mode (blocking)

Each graphic line within the two blocks requires 80 bytes, since the 320 pixels in
a line are coded into four pixels to a byte. The first byte in a graphic line (an 80
byte series) corresponds to the frrst four dots of the graphic on the screen. Bits 7
and 8 contain the color information for the leftmost pixel, while bits 0 and 1
contain the color information for the rightmost pixel of the byte.

499

10. Accessing and Programming the Video Cards PC System Programming

bit 7 6 5 4 3 2 1 0

I : I I : I : Ii

Column 0 1 2 3
Column 316 317 318 319

Graphic line coding in 320x200 resolution

A formula can be derived with the help of this information to determine the byte in
video RAM, similar to the Hercules card. This byte is relative to the starting
address of the screen page, which contains the color information for a pixel. The
screen column (0---319) is designated as X and the screen line (0---199) as Y:

Address = 2000H * (Y mod 2) + 80 * int(Y/2) + int(X/4)

To detennine the number of the two bits within this byte which represents the
pixel, use the following fonnula:

Bit number = 6 - 2 * (X mod 4)

For example, if this fonnula returns 4, this means that the color information for
the dot is coded into bits 4 and 5.

500

Abac/lS 10.4 The IBM Color Card

0000:0000

bit 7
bit 7 6 5 4 3 2 1 0 ~I11r,-;,11~11""';''' 11111111'Column 0 1 2 3 4 5 6 7

Column 632 ••••••.••• 639

Graphic line coding in 640x200 resolution

640x200 resolution

High-resolution mode with a resolution of 64Ox200 dots only allows the use of
two colors. The video RAM assignment in this mode is similar to 320x200 mode.
Each line displays twice as many pixels, with one bit encoding the line instead of
2 bits. Because of this, one screen line requires 880 bytes. Therefore the formulas
for access to a screen pixel are similar.

Address = 2000H * (Y mod 2) + 80 * int(Y/2) + int(X/8)

Bit number = 7 - (X mod 8)

eGA registers

The eGA has a mode selection register at address 308H which is comparable with
the control register of the monochrome display adapter. You can write to this
register but not read it.

501

10. Accessing and Programming the Video Cards 	 PC System Programming

7 6 5 4 3 2 1 0 	 bit

I I I I J I 1- O.40x25 charactersI 1.80x25 characters
r I 	 O=text mode

1.graphlc mode (320x200)

O=color display
1 =monochrome display
O.screenoff

1.graphlc mode (640x200)

O.brlght background
1 =bllnklng background

unused

Mode selection register

Bit layout

Bit 0 of this register detennines the text mode display of 80 or 40 columns per
line. A 1 in bit 0 displays 80 columns, while a 0 in bit 0 displays 40 columns.

The status of bit 1 switches the eGA from text mode to the 32Ox200 bit-mapped
graphic mode. A 1 in this register selects graphic mode, while a 0 selects text
mode.

Bit 2 should be of interest to any users who want to operate their eGA with a
monochrome monitor. If this bit contains the value 1, the 6845 suppresses the
color signal, displaying monochrome mode only.

Bit 3 is responsible for creating screens. If it contains the value 0, the screen
remains black. This suppression is useful when changing between display modes;
it prevents sudden signals from reaching the monitor which could cause damage.

Bit 4 enables and disables 640x200 bitmapped graphic mode. A 1 in bit 4 enables
this mode, while a 0 disables iL

Bit 5 has the same significance as in the monochrome card. If it contains a 0,
blinking stops and bit 7 returns one of the 16 available background colors. This
bit contains a default value of 1, which causes blinking characters.

The various text or graphic modes and the color or monochrome display can be
selected in these modes with this register. Bits 0, 1, 2 and 4 are used for this. The
following table shows how these bits must be programmed to obtain certain
modes:

S02

Abacus 10.4 The IBM Color Card

Bit 4 Bit 2 Bit 1 Bit 0 Result
0 1 0 0 40x25 text monochrome
0 0 0 0 40x25 text color
0 1 0 1 80x25 text monochrome
0 0 0 1 80x25 text color
0 1 1 0 320x200 graphic monochrome
0 0 1 0 320x200 graphic color
1 1 1 0 640x200 graphic monochrome

The eGA also has a status register similar to the status register in the
monochrome display adapter. The following figure shows the conslIUction of this
register, which can be found at address 3DAH. It is a read-only register.

7 6 5 4 321 Obit--r-,..........,.-...,

1 =memory access possible
without disturbing
screen contents

1=vldeo access triggered

L...-_-I0=vldeo access on
1 =vldeo access off
1=electronlc signal

transmitted In
vertical direction

Status register structure

Bit 0 of this register always contains the value 1 when the 6845 sends a horizontal
synchronization signal to the monitor. This signal is transmitted when the creation
of a line ends and the CRTs electron beam reaches the end of the screen line. The
electron beam then jumps back to the left comer of the screen line. The bit gets its
significance from the condition that the eGA doesn't always allow data reading or
writing within video RAM.

Flickering and tbe eGA

This problem occurs because the 6845 must continuously access video RAM to
read its contents for screen display. If a program triCS'to transmit data to video
RAM, problems can arise when the 6845 accesses video RAM at the same time.
The result of this memory collision is· an occasional flickering on the screen.

To avoid this problem, you should only access video RAM when the 6845 is not
accessing it. This only occurs when a horizontal synchronization signal travels to
the screen, because it requires a moment of time until the electron beam has carried

503

10. Accessing and Programming the Video Cards PC System Programming
"

out this instruction. For this reason, the status register must be read before every
video RAM access on a CGA. This process must be repeated until bit 0 contains
the value 1. When this happens, a maximum of two bytes can then be transmitted
to video RAM.

Demonstration program

The program at the end of this section demonstrates how this process functions.
This delay in video RAM access doesn't occur with monochrome cards because
they are equipped with special hardware logic and fast RAM chips. This is also
true of most of the newer model color cards. Before waiting for the horizontal
synchronization signal, which results in an enormous delay of the display output,
the user should try direct access to video RAM to test his color card's reaction
time.

If many accesses to video RAM occur within a short period of time (e.g., scrolling
the screen), the electron beam doesn't respond fast enough. The screen should be
switched off using bit 3 of the mode selection register. This prevents the 6845
from accessing video RAM, permitting unlimited user access to video RAM.
When data transfer ends, the screen can be switched on again. BIOS uses this
method during scrolling. which results in the flickering "silent movie effect."

Color selection register

The color selection register is located at address 3D9H. This register is write-only
(cannot be read).

7

Background color •
320x200 graphic mode,
border color In 40x25
text mode

L...____~ =Intenslve background
color In text mode

Number of color palette
~-------Iused In 320x200 graphl

mode
~----------------~Unused

Color selection register

The meanings of individual bits in this register depend on the display mode. Text
mode uses the lowest four bits for assigning the background color from the 16
available colors. In 320x200 graphic mode, these four bits indicate the color of all
pixels represented by the bit combination 00{b) (background color).

504

Abacus 10.4 The IBM Color Card

Bit 5 selects the color palette for 320x200 mode. If this bit contains the value I,
the first color palette (cyan, violet, white) is selected. A value of 0 selects the
second color palette (green, yellow, red).

Internal registers

The 18 internal registers of the 6845 on this card are accessed exactly like the
monochrome card. The only difference is that the index and the data register are
located at 3D4H and 3D5H. The following table shows the contents which the
register must have for various display modes.

No. Meaning Text 1 Text2 Graphics
0 Horiz. characters seeded 56 113 56
1 Horiz .. characters displayed «J III 40
2 Horiz. synchronization signal to 45 !ll 45

._. Characters
3 Horiz. synchronization signal 10 10 10

in characters
4 Vert. characters seeded 31 31 127
5 Vert. characters justified 6 6 6
6 Vert. characters displayed ;;S 25 100
7 Vert. synchronization signal to 28 28 112

_. characters
8 Interlace mode 2 2 2
9 Number of scan-lines per line 7 7 1
10 Starting line of blinkin<;L cursor 6 6 6
11 Ending line of blinking cursor 7 7 7
12 Display paqe starting address (high byte) 0 0 0
13 Display page starting address (low byte) 0 0 0
14 CUsrsor character address (high byte) 0 0 0
15 Cursor character address (low byte) 0 0 0
16 Reserved
17 Reserved

These registers are of interest to the user since they define the position and
appearance of the cursor on the screen. Sec#on ;10.1 described programming these
registers. The eGA adds registers 12 and13. They indicate the start of the video
page which must be displayed on the screen, as offset of the beginning of the 16K
RAM on the card (B800:0000), divided by 2. Register 12 contains the most
significant 8 bits of this offset, while register 13 contains lite least significant 8
bits. Normally both registers contain the value 0, displaying the frrst screen page
(beginning at the address B800:00(0) on the screen. For display of the first screen
page, which begins at location B800:1000 in the 8Ox25 text mode, the value
l000H divided by 2 (8ooH) must be entered in both registers.

The last of the three programs in this chapter accesses the color/graphics adapter.
The only significant difference between the two preceding programs lies in the fact
that the video controller can synchronize video RAM access and screen
construction. This is necessary on all video cards where direct access to video
RAM causes a flickering on the screen. The WAIT constant, defmed directly after
the program header, switches synchronization on or off. Its contents decide during

505

10. Accessing and Programming the Video Cards PC System Programming

the assembly of the program, whether to assemble the program lines for
synchronization listed in the source listing. These lines would slow down the
screen considerably, and should only be included if it is absolutely necessary.

Assembler listing: VCOL.ASM

i··**********·*******··**···**·········*****************······********i
;" VCOL ";
:*------------ --*:
;* Task : Makes some basic functions available for *;
;* access to the Color Graphics Adapter (CGA) *;

;*---*j*.;" Info All functions subdivide the screen ,
;" into columns 0 to 79 and lines 0 to 24 ";
;* in text mode and into columns 0 to 719 and *;
;* the lines 0 to 347 in graphic mode. *;
;* the 40 column text mode is not supported I *;
;" A high resolution graphic screen should appear";
;" first, followed by a text screen. If the high ";
;* res screen doesn't appear, try running the *;
;* program a few times in succession. *;

i*---*:
;" Author MICHAEL TISCHER ";
;" Developed on : 8/13/87 ";
;* Last update : 6/16/89 ";
;*---*;
;" assembly MASH VCOL (program will assemble with one ";
;" warning - it WILL link & run) ";
;* LINK VeaL; *;
;*---*i
;* Call : VCOL *;
i**************************·**i

;-- Constants -====--==-~===-=,..==-------

CONTROL REG - 03D8h ;Control register port address
CCHOICE- REG - 03D9h ;Color select register port address
ADDRESS 6845 - 03D4h ;6845 address register
DATA 6845 - 03D5h ;6845 data register
VI03EG = OBSOOh ;Video RAM segment address
CUR START - 10 ;Reg f for CRTC: Cursor start line
CU()NO -11 ;Reg f for CTRC: cursor end line
CURPG_HI = 12 ;Page address (high byte)
CURPG LO - 13 ;Page address (low byte)
CURPOS_HI = 14 ;Reg f for CRTC: Cursor pos high byte
CURPOS_LO - 15 ;Reg f for CRTC: Cursor pos low byte
DELAY = 20000 ;Counter for delay loop

i-= Macros -===--===-===---==-==--~---=--

;-- SETMODE : Macro for configuring screen control register --------

setmode macro modus

mov <lx,CONTROL_REG ;Address of the display control register
mov aI, modus ;New mode into the AL register
out <lx,al ;Send mode to control register

endm

;-- WAITRET: waits until display is completed -----------------------

waitret macro

local wrl ; Local label

mov <lx,3DAh ;Address of the display status register
wrl: in al,<lx ;Get content

S06

Abacus 	 10.4 TIulIBM Color Card

local 	 wr1 ; Local label

mov dx,3DAh ;Address of the display status register
wr1: 	 in al,dx ; Get content

test al,8 ;Vertical retrace?
je wr1 ;NO --> wait

endm

;- Stack ----------------

stack 	 segment para stack ;Definition of stack segment

dw 256 dup (1) ;256-word stack

stack 	 ends ;End of stack segment

;- Data ---=----------------=------
data 	 segment para 'DATA' ;Definition of data segment

;- Data required for demo program ---~--~-=--------

initm 	 db 13,10
db ·VCOL (c) 1988,1989 by Michael Tischer·
db 13,10,13,10
db "This demo program only runs with a Color/Graphics",13,10
db ·Adapter (CGA). If your PC uses another type of·,13,10
db "video card press the <s> key to stop the program.",13,10
db ·Press any other key to start the program••• ·,13,10,·S·

str1 	 db 1,0

;~- Table of offset addresses of line beginnings -==---=--------==-==
lines 	 dw 0*160, 1*160, 2*160 ;start addresses of the lines as

dw 3*160, 4*160, 5*160 ;offset addresses in the video RAM
dw 6*160, 7*160, 8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160

dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160,24*160

graphict 	 db 38h, 28h, 2Dh, OAh, 7Fh, 06h ;register values for the
db 64h, 70h, 02h, 01h, 06h, 07h ; graphic-modes

textt 	 db ?lh, SOh, SAh, OAh, 1Fh, 06h ; register-values for the
db 19h, 1Ch, 02h, 07h, 06h, 07h ;graphic-modes

wait dbO 	 ;TRUE «>0) when caller uses the
;/F switch

data 	 ends ;End of data segment

code 	 segment para 'COOE' ;Definition of the COOK segment

assume cs:code, ds:data, es:data, 	ss:stack

;== This 1s only the Demo-Program =-==-====-===---===--~-------===--

demo 	 proc far

;-- Look for IF from DOS prompt -----------------------

mov cl,ds:128 ;Get number of bytes from prompt
or cl,cl ;No parameters given?
je switch1 ;NO --> Ignore
mov bX,129 ;BX points to first byte in prompt
mov ch,bh ;set loop high byte to 0

switch: 	 cmp [bx], "F/" ;Switch in this position?

507

10. Accessing and Progromming tlu! Video Cards 	 PC System Progromming

je switchl
cmp [bx], "fI"

je switchl
inc hl
loop switch

switchl: 	 mov ax, data
mov ds,ax
mov eS,ax

mov wait,cl

;YES --> switch found
;Switch in this position?
;YES --> Switch found
;Set BX to next character
;Check next character

;Get segment addr. of data segment
;and load into OS
;and ES

; Set WAIT 	 flag

;-- Display init message and wait for input ------------

mov ah,9
mov dX,offset
int 21h

xor ah,ah
int 16h
cmp alt"s"
je ende
cmp al/"S"
jne startdemo

ende: 	 mov aX,4COOh
int 21h

startdemo 	 label near
call grafhi
xor al,al
call cgr

xor bX,bx
xor dX,dx
mov aX,199
mov cx,639

grl: 	 push cx
mov ex, ax
push ax
mov al,l

gr2: 	 call pixhi
inc dx
loop gr2
pop ax
sub aX,3
pop cx
push cx
push ax
mov al,l

gr3: 	 call pixhi
inc bx
loop gr3
pop ax
pop cx
sub ex, 6
push cx
mov ex,ax
push ax
mov al,l

gr4: 	 call pixhi
dec dx
loop gr4
pop ax
sub ax,3
pop cx
push cx
push ax
mov al,l

gr5: 	 call pixhi

;Function number for string display
initm ;Address of intial message

;Call DOS interrupt 21H

;Function number: get key
;Call BIOS keyboard interrupt
;<s> key pressed?
;YES --> End program
;<S> key pressed?
;NO --> Start demo

;Function number: End program
;Call DOS interrupt 21H

;switch on 320*200 pixel graphic

;Clear graphic display

;Column 0
;Line 0
; Pixels-vertical
; Pixels-horizontal
;Record horizontal pixels
;Vertical pixels to counter
;Record vertical pixels on the stack

; Set pixel
; Increment line
;Draw line
;Get vertical pixels from the stack
;Next line 3 pixels less
;Get horizontal pixels from the stack
;Record horizontal pixels
;Record vertical pixels on the stack

;Set pixel
;Increment column
;Draw line
;Get vertical pixels from stack
;Get horizontal pixels from stack
;Next line 6 pixels less
;Record horizontal pixels
;Vertical pixels to counter
;Record vertical pixels on the stack

;Set pixel
; Decrement line
;Draw line
;Get vertical pixels from stack
;Next line 3 pixels less
;Get horizontal pixels from stack
;Record horizontal pixels
;Record vertical pixels on the stack

;Set pixel

508

AbacllS 10.4 The IBM Color Card

demol:

demo2:

demo

dec bx
loop grS
pop ax
pop ex
sub ex, 6
cmp ax,S
ja grl

xor ah,ah
int l6h

call text
xor bp,bp
mov al,30h
or ax,bp
mov strl,al
call setcol
call setpage
call cIs
xor bx,bx
call calo
mov cx,2000
xor ah,ah
mov si, offset 'strl
inc ah
call print
loop demo2

xor ah,ah
int l6h
inc bp
cmp bp,4
jne demol

xor bp,bp
call setpage
jmP ende
endp

;-- The actual functions follow

;Increment column
;Draw line
;Get vertical pixels from the stack
;Get horizontal pixels from the stack
;Next line 6 pixels less
;Is the vertical line longer than S
;YES--> continue

;Wait for function number of key wait
;Call BIOS keyboard interrupt

;Switch on 80x25 character text mode
;Process screen page 0 first
;ASCII code ·0·
;Convert page number to ASCII
;Store in string
;Set color
;Activate screen page in BP
;Clear screen page
;Begin in the upper left
;Screen corner with output
;A page contains 2,000 characters
;Start with color code 0
;Offset address of string 1
;Increment color value
;Output string 1
;Repeat until screen is full

;Wait for key

;Call BIOS-Keyboard-Interrupt

;Increment page number

;All 4 pages processed ?

;NO --> then next page

;Activate page 0 again

;Goto program end

=---=---====~~----

;-- TEXT: switches the text display on -------------------------------
; -- Input none
;-- Output none
;-- Register : AX, SI, BH, OX and FLAGS are changed

text proc near

mov si,offset textt ;Offset address of the register-table
mov bl,OOlOOOOlb ;80x25 text mode, blinking
jmP short vcprog ;Program video controller again

text endp

;-- GRAFHI: switches the 640"200 pixel graphic mode on -----------------
;-- Input : none
; -- Output : none
;-- Register : AX, SI, BH, OX and FLAGS are changed

grathi proc near

mov bl,OOOlOOlOb ;Graphic mode with 640"200 pixels
jmP short graphic ;Program video controller again

grafhi endp

;-- GRAFLO: switches the 320"200 pixel graphic mode on -----------------
;-- Input : none
;-- Output : none
;-- Register: AX, SI, BH, OX and FLAGS are changed

509

10. Accessing and Programming the Video Cards 	 PC System Programming

graflo 	 proc near

mov bl,00100010b ;Graphic mode with 320*200 pixels
graphic: mav si,offset graphict ;Offset address of the register table

graflo 	 endp

;-- VCPROG: programs the video controller ----------------------------
;-- Input SI - Address of a register table
;- BL - Value for display control register
;-- OUtput none
;-- Register AX, SI, BH, OX and FLAGS are changed

veprog 	 proc near

setmode bl ;Bit 3 - 0: screen off

mov cx,12 ;12 registers are set
xor bh,bh ;Start with register 0

vep1: 	 lodsb ;Get register value from table
mov ah,al ;Register value to AH
mov al,bh ;Number of the register to AL
call setvk ;Transmit value to controller
inc bh ;Address next register
loop vepl ;Set addition~l registers

or bl,S ;Bit 3 = 1: screen on
setmode bl ;Set new mode
ret ;Back to caller

veprog 	 endp

;-- SETCOL Sets the color of the display frame and Background ----
;-- Input AL = color value
;-- OUtput none
; -- register AX and OX are changed
;-- Info in text mode the lowest 4 bits indicate the frame color
;- in graphic mode the lowest 4 bits indicate the frame
;-- and background color, bit 5 selects the color palette

setcol 	 proc near

mov dx,CCHOICE REG ;Address of the color selection register
out dx,al - ;Output color value
ret ; Back to caller

setcol 	 endp

;-- COEF sets the start and end line of the cursor -------------
;-- Input CL = start line
i-- CH = end line
;-- OUtput none
;-- register AX and OX are changed

cdef 	 proc near

mov aI, CUR_START ;Register 10: start line
mov ah,cl ;Start line to AH
call setvk ;Transmit to video controller
mov aI, CUR_END ;Register 11: end line
mov ah,ch ;End line to AH
jmp short setvk ;Transmit to video controller

cdef 	 endp

;-- SETPAGE sets the screen page --------------------------------

;- Input BP - Number of the screen page (0 to 3)

i-- Output none

i-- register BX, AX, CX and DX are changed

510

Abacws 10.4 The IBM Color Card

;-- Info in the Graphic modes the first screen page has the
;-- number 0, the second the number 2

setpage proc near

mov bx,bp ;Screen page to BX
mov cl,5 ;Multiply by 2,048
ror bx,cl
mov al,CURPG HI ;Register 12: Hi byte page address
mov ah,bh - ; Hi byte of the screen page to AH
call setvk ;Transmit to video controller
mov al,CURPG LO ;Register 13: Lo byte page address
mov ah,bl - ; Lo byte of the screen page to AH
jmp short setvk ;Transmit to video controller

setpage endp

;-- SETBLINK sets the blinking cursor ------------------------------
i-- Input 01 = Offset address of the cursor
i-- Output none
i-- register ax, AX and OX are changed

setblink proc near

mov bx,di ;Move offset to ax
mov al,CURPOS HI ;Hi byte of the cursor offset
mov ah,bh - ;HI byte of the offset
call setvk ;Transmit to video controller
mov al,CURPOS LO ;Lo byte of the cursor offset
mov ah,bl - ;Lo byte of the offset

;-- SETVK is called automatically --------------------------

setblink endp

;-- SETVK sets a byte in one register of the video controller ---
;-- Input AL = Number of the register
j-- AH - new content of the register
;-- Output none
;-- register OX and AL are changed

setvk proc near

mov dx,ADORESS 6845 ;Address of the index register
out dx,al - ;Send number of the register
jmp short $+2 ;Short 1/0 pause
inc dx ;Address of the index register
mov al,ah ; Content to AL
out dx,al ; Set new content
ret ; Back to caller

setvk endp

j-- GETVK gets a byte from one register of the video controller
i-- Input AL = Number of the register
i-- Output AL - Contents of register
i-- register DX and AL are changed

getvk proc near

mov dx,ADORESS_6845 ;Address of the index register
out dx,al ;Send number of the register
inc dx ;Index register address
jrnp short $+2 ; Short io pause
in al,dx iSet new contents
ret ; Back to caller

getvk endp

;-- SCROLLUP: scrolls a window N lines upward ------------------------

SI1

10. Accessing and Programming the Video Cards 	 PC System Programming

i-- Input
;-
;
;-
;-
;-
;-- OUtput

BL - line upper left
BH - column upper left
DL - line below riqht
DH = column below riqht
CL - Number of lines, to be scrolled
BP - Number of the screen paqe (0 to 3)
none

;-- reqister only FLAGS are chanqed
;- Info the display lines liberated are cleared

scrollup 	 proc near

cld

push ax
push bx
push di
push si

push bx
push ex
push dx
sub dl,bl
inc dl
sub dl,cl
sub bh,dh
inc dh
call calo
mov si,di
add bl,cl
call calo
xchq si,di

anp wait, 0
je supO

waitret
setmode OOlOOlQlb

supO: 	 push ds
push es
mov ax,VIO_SEG
mov ds,ax
mov es,ax

supl: 	 mov ax,di
mov bx,si
mov cl,dh
rep movsw
mov di,ax
mov si,bx
add di,160
add si,160
dec dl
jne sup1

pop es
pop ds

anp wait,O
je sup2

setmode OOlOllOlb

sup2: 	 pop dx
pop ex
pop bx
mov bl,dl
sub bl,cl
inc bl

iOn strinq commands count up

;All chanqed reqisters to the
;Secure stack
;In this case the sequence
;must be observed

;These three reqisters are returned
;before the end of the routine
; From t he stack
;Calculate the number of lines

;Subtract number of lines to be scrolled
;Calculate number of columns

;Convert upper left in offset
;Record address in SI
;First line in scrolled window
;Convert first line in offset
;Exchanqe SI and DI

;Flicker suppressed?
;NO -> SUPO

;YES -->Wait for retrace
;Disable screen

;Store segment reqister
;Ot!,the stack
;Segment address of the video RAM
;To DS
;And ES

;Record DI in AX
; Record SI in BX
;Number of columns in counter
;Move a line
;Restore DI from AX
;Restore SI from BX
; Set next 11ne

;processed all lines ?
;NO --> move another line

;Get segment reqister from
; Stack

;Flickerinq suppressed?
;NO --> SUP2

;YES --> Enable screen

;Get lower riqht corner back
;Return number of lines
;Return upper left corner
; Lower line to BL
;Subtract number of lines

512

AbaclLf 	 10.4 The IBM Color Card

mav ah,07h
call clear

pop si
pop di
pop bx
pop ax

ret

scrollup 	 endp

;-- SCROLLDN: scrolls a

;Color : black on white
; Clear lines

;CX and DX have already been
jRestored

;Back to caller

window N lines down --------------------------
;-- Input BL - line upper left
;-- BH - column upper left
; -- DL - line below right
; -- DH - column below right
;-- CL - number of lines to be scrolled
;-- BP - number of the screen page (0 to 3)
;-- Output none
;-- register only FLAGS are changed
;-- Info the display lines liberated are cleared

scrolldn 	 proc near

cld

push ax
push bx
push di
push si

push bx
push ex
push dx

sub dh,bh
inc dh
mav al,bl
mov bl,dl
call calo
mov si,di
sub bl,cl
call calo
xchg si,di
sub dl,al
inc dl
sub dl,cl

crnp wait,O
je sdnO

waitret
setmode 00100l0lb

sdnO: 	 push ds
push es
mov ax,VIO_SEG
mov ds,ax
mov es,ax

sdnl: 	 mov ax,di
mav bx,si
mav cl,dh
rep movsw
mov di,ax
mov si,bx
sub di,160
sub si,160
dec dl

IOn string commands count up

;Record all changed registers
; On the stack
;In this case the sequence
;Must be observed

;These three registers are returned
;From the stack before the end
;Of the routine

;Calculate the number of columns

;Record line upper left in AL
;Line below right to line below left
;Convert upper left in offset
;Record address in 51
;Subtract number of characters to scroll
; Convert upper left in offset
;Exchange 51 and DI
;Calculate number of lines

;Subtract 	number of lines to be scrolled

;Flicker suppressed?
;NO --> SDNO

;YES --> Wait for retrace
iDisable screen

;Store segment register on the
;Stack
;Segment address of the video RAM
;To DS
land ES

;Record DI in AX
;Record 51 in BX
;Number of columns in counter
;Move a line
;Restore Dr from AX
;Restore SI from ax
;set into next line

;processed all lines

513

10. Accessing and Programming the Video Cards 	 PC System Programming

jne sdnI ;NO --> move another line

pop es ;RAlturn segment reqister from
pop ds ; stack

cmp wait,O ;Flicker suppressed?
je sdn2 ;NO --> SDN2

setmode OOlOllOlb ;YES --> Enable screen

sdn2: 	 pop dx ;Get lower right corner
pop ex ;Return number of lines
pop bx ;Return upper left corner
mav dl,bl ;upper line to DL
add dl,cl ;Add number of lines
dec dl
mav ah,07h ;Color : black on white
call clear ;Erase liberated lines

pop si ;CX and DX have already been
pop di ; Returned
pop bx
pop ax

ret 	 ;Back to caller

scrolldn 	 endp

;-- CLS: Clear the screen completely ---------------------------------

;-- Input : BP - number of the screen page (0 or 1)

;-- OUtput : none

;-- register : only FLAGS are changed

cls 	 proc near

mav ah,07h ;Color is white on black
xor bx,bx ;upper left is (0/0)
mov dx, 4F18h ;Lower right is (79/24)

;-- Execute Clear --

cIs 	 endp

;-- CLEAR: fills a designated display area with space characters -----
;-- Input AH - attribute/color
;-- BL - line upper left
;-- BH = column upper left
;-- DL ~ line below right
; -- DH = column below right
;-- BP = number of the screen page (0 to 3)
;-- Output none
; -- regi ster only FLAGS are changed

clear 	 proc near

cld iOn string commands count up
push ex ;Store all register which are
push dx ;Changed on the stack
push si
push di
push es
sub dl,bl ;Calculate number of lines
inc dl
sub dh,bh ;Calculate number of columns
inc dh
call calo ;Offset address of the upper left corner
mav cx,VIO_SEG ;Segment address of the video RAM
mov es,cx . ;To ES
xor ch,ch ;Hi bytes of the counter to 0

514

Abacus 	 10.4 The IBM Color Card

mov al,· • ;Space character

c::mp
je

wait, 0
ciearl

;Flickering suppressed?
;NO --> CLEAR!

push dx
waitret
setmode OOIOOIOlb
pop dx

;Store DX on the stack
;Retrace wait
;Switch screen off
;Return DX from the stack

clearl: mov si,di
mov cl,dh
rep stosw
mov di,si
add di,160
dec dl
jne ciearl

;Record DI in SI
;Number columns in counter
;Store space character
;Return 01 from SI
;Set in next line
;AII lines processed?
;NO --> erase another line

c::mp
je

wait,O
clear2

;Flicker suppressed?
;NO --> CLEAR2

setmode OOIOllOlb ;Enable screen

clear2: pop
pop
pop
pop
pop
ret

es
di
si
dx
ex

;Get registers from
; Stack again

; Back to caller

clear endp

;-- PRINT: outputs a string on the screen ----------------------------
;-- Input AH - attribute/color
; -- 01 - offset address of the first character
;-- SI - offset address of the strings to OS
;-- BP - nlllllbEir of the screen page (0 to 3)
;-- OUtput 01 points behind the last character output
;-- register AL, DI and FLAGS are changed

Info the string must be terminated by a NUL-character.
;-- other control characters are not recognized

print 	 proc near

cld ;On string commands count up
push si ;Store SI, DX and ES on the stack
push es
push ex
push dx
moy dx, VIO SEG ;Segment address of the video RAM
moy cl,wait ; Get WAIT flag
moy es,dx ;First to DX and then to ES

jmp short print3 ;Get character and display it

printl 	 label near

or cl,cl ;Flicker suppressed?
je print2 ; NO --> PRINT2

push ax ;Record characters and color
mov dx,3DAh ;Address of the display-status-reqister

hrl: 	 in al,dx ; Get content
test al,1 ;Horizontal retrace?
jne hri ;NO --> wait
cli ;permit no further interrupts

hr2: 	 in al,dx ; Get content
test al,1 ;Horizontal retrace?
je hr2 ;YES --> wait
pop ax ;Restore characters and color

515

10. Accessing and Programming tlu! Video Cards PC System Programming

sti ;Do not suppress Interrupts any more

print2: stosw ;Store attribute and'color in V-RAM
print3: lodsb ;Get next character from the string

or al,al ;Is it NUL
jne printl ;NO --> output

printe: pop dx ;Get SI, OX, CX and ES from stack
pop cx
pop es
pop si
ret ; Back to caller

print endp

;-- CALO: Converts line and column into offset address ---------------
;-- Input BL - line
;- BH - column
;-- BP - number of the screen page (0 to 3)
;-- Output 01 - the offset address
;-- register 01 and FLAGS are changed

calo proc near

push ax ;Secure AX on the stack
push bx ;Secure BX on the stack

shl bx,1 ;Column and line times 2
mav al,bh ;Column to AL
xor bh,bh ;Hi byte
mov di, [lines+bx] ;Get offset address of the line
xor ah,ah ;HI byte for column offset
add di,ax ;Add line and column offset
mav bX,bp ;Screen page to BX
mav cl,4 ;Multiply by 4,096
ror bx,cl
add di,bx ;Add beginning of screen page to offset
pop bx ;Restore BX from stack
pop ax ;Restore AX from stack
ret ; Back to caller

calo endp

;-- CGR: Erase the complete Graphic display --------------------------
;-- Input At = OOH erase all pixels
;-- FFH : set all pixels
;-- Output none
; -- register AH, BX, CX, 01 and FLAGS are changed
;-- Info this Function erases the Graphic display in both
i-- Graphic modes

cgr proc near

push es ;Store ES on the stack
cbw ; Expand At to AH
xor di,di ;Offset address in video RAM
mov bx,VIO_SEG ;Segment address screen page
mav es,bx ;Segment address into segment register
mav cx,2000h ;One page is 8KB words
rep stosw ;Fill page
pop es ;Return ES from stack
ret ; Back to caller

cgr endp

;-- PIXLO: sets a pixel in the 320*200 pixel graphic mode

;-- Input BP - number of the screen page (0 or 1)

; - BX - column (0 to 319)

;-- OX - line (0 to 199)

;-- AL - color of the pixels (0 to 3)

516

Abacus 10.4 The IBM Color Card

OUtput none

;-- register : AX, DI and FLAGS are chanqed

pixlo proc near

push ax ;Secure AX on the stack
push bx ;Note BX on the stack
push ex ; Store ex on the stack
mov cl,7
mov ah,bl ;Transmit column to AH
and ah,llb ;Column mod 4
shl ah,l ;Column * 2
sub cl,ah ;7 - 2 • (column mod 4)

mov ah,ll ;Bit value
shl ax,el ;Move to pixel position
not ah iReverse AM
shr bx,l ;Divide BX by 4 by shiftinq
shr bx,l ; Riqht twice
jrnp short spix ;Set pixel

pixlo endp

;-- PIXHI: sets a pixel in the 640*200 pixel qraphic mode

;-- Input BP = n~r of the screen paqe (0 or 1)

i- BX = column (0 to 639)

; DX - line (0 to 199)

i-- AL - color of the pixels (0 or 1)

;-- OUtput none

;-- reqister AX, DI and FLAGS are chanqed

pixhi proc near

push ax ;Store AX on the stack
push bx iNote BX on the stack
push ex ;Note ex on the stack
mov cl,7
mov ah,bl ;Transmit column to AH
and ah,l11b ;Column mod 8
sub cl,ah ; 7 - column mod 8
mov ah,l ;Bit value
shl ax,el ;Move pixel position
not ah ;Reverse AH
mov cl,3 ;3 shifts
shr bx,cl ;Divide BX by 8

;-- set pixel ---

pixhi endp

;-- SPIX: sets a pixel in the graphic display -----------------------
;-- Input BX = column offset
;-- DX - line (0 to 199)
;-- AH = Value to cancel old Bits
;-- AL - new Bit value

Output none
i-- register AX, DI and FLAGS are changed

spix proc near

push es ;Secure ES on the stack
push dx ;Secure DX on the stack
push ax ;Secure AX on the stack

xor di,di ;Offset address in video RAM
mov ex,VIO_SEG ;Seqrnent address screen paqe
mov es,cx ;Segment address into segment register
mov ax,dx ;Move line to AX
shr ax,l ;Divide line by 2
mav cl,80 ; The factor is 90
mul cl ;Multiply line by 80

517

10. Accessing and Programming the Video Cards 	 PC System Programming

and
mov
ror
moV
add
add
pop
mov
and
or
mov

pop
pop
pop
pop
pop

ret

dx,l
cl,3
dx,cl
di,ax
dl,dx
dl,bx
ax
bl,es:[di]
bl,ah
bl,al
es:[dij,bl

dx
es
cx
bx
ax

;Line mod 2
;3 shifts
; Rotate right (* 2000H)
;80 • int(line/2)
;+ 2000H • (line mod 4)
;Add column offset
;Return AX from stack
;Get pixel
;Erase Bits
;Add pixel
; write pixel back

; Return ox from stack
; Return ES from stack
; Return ex from stack
iReturn BX from stack
iReturn AX from stack

; Back to caller

splx endp

i=- end ==-=--~-----========--===-==-===~====---===----=====-=---=---==

code 	 ends ;End of the code segment
end demo

S18

Abacus 10.5 EGA and VGA Cards

10.5 EGA and VGA Cards

The EGA and VGA cards far exceed their predecessors in both graphics and in text
display capabilities. Other computers have had EGA and VGA capabilities for
some time (e.g., work stations, CAD/CAM applications), but these video cards are
now at prices where many home systems will soon have them.

The range of power of this new generation of video cards can be seen in their very
sharp resolutions and their ability to display almost any number of lines on the
screen. The EGA and VGA cards' greatest feature lies in their ability to emulate
other video cards.

These capabilities come with a price-more complicated hardware and
programming are required. One result of this is that the features of an EGA card or
a VGA card can no longer be realized with the traditional PC video controller (the
Motorola 6845). Instead, most EGA and VGA cards contain a VLSI chip developed
especially for use on an EGA card. At the heart of this component is a video
controller that controls the video signal generation. Its basic task is similar to that
of the 6845, but its registers differ from those of the 6845, both in number and
interaction between registers. Comparing the 6845 and VSLI is like comparing
BASIC and assembly language, where the increase of power is in proportion to the
degree of language complexity.

We recommend that you avoid programming the hardware registers directly unless
you absolutely must do so. Many tasks can be delegated to the BIOS without
wasting much time. Not only will this keep your program code more compact and
easier to read, it will greatly improve the compaubility of your code with other
video cards. Among the tasks which the various functions of the BIOS video
interrupt can perform are:

Initialization of the video mode

Selection of the display page

Cursor positioning

Defining the starting and ending line of the cursor

Palette and border color selection

Setting the size of the character matrix, and thereby the number of text
lines which can be displayed on the screen

Loading user-defined character sets

Reading configuration data

Detailed information about traditional BIOS video functions and the new functions
of the EGA/VGA BIOS can be found in Sections 7.4.

519

10. Accessing and Programming the Video Cards PC System Programming

If you need speed and maximum control over the screen, you should still perform
time-critical actions (e.g., manipulating video RAM) "by hand."

EGAlVGA and text mode

There is no difference between the EGA and MDA or CGA card in text mode. The
video RAM and attribute byte are organized the same way for the EGA card as for
the other two cards-even the location of the video RAM is the same. But since an
EGA card can emulate either a eGA card or an MDA card, depending on the
monitor to which it is connected, you should first determine what kind monitor is
in use. From this the EGA can determine which of the two systems to emulate
(routines presented in Section 10.7 show how this is done). The type of card being
emulated determines where the video RAM can be found in memory, how the bits
of the character attribute byte are interpreted, and how many screen pages are
available.

Remember that the EGA or VGA card does not contain a 6845 CRTC, despite the
fact that it can perfectly emulate its video predecessors. This means that the status
and control registers of the MDA and eGA cards are unavailable. However, since
the settings that are normally made with these registers can also be performed with
the BIOS, we don't really need these registers. You should also remember that
there are no restrictions to accessing the video RAM of an EGA card or a VGA
card when it is in eGA emulation. It is unnecessary to synchronize screen access
with the activity of the CRTe by reading the status register.

The para1lels between the organization of the video RAM in the eGA and MDA
cards also apply when the text mode is switched to 43 lines (which is impossible
in eGA emulation). As with any other number of displayed lines, this does not
change the basic structure of the video RAM at all. It is larger, but the formulas
for calculating the offset position of a character and its attribute byte within the
video RAM are still valid.

The VGA card is capable of 25, 43 and even 50 lines in text mode, depending on
the monitor in use.

These parallels also apply to the graphics modes already available to the eGA card
The position of the video RAM and its structure are identical to the those of the
CGAcard

EGA!VGA and graphic modes

The EGA card offers the following new graphics modes:

320x200 pixels, 16 colors (BIOS code: ODH)

640x200 pixels, 16 colors (BIOS code: OEH)

• 64Ox350 pixels. 2 colors (BIOS code: OFH)

520

Abacus 10.5 EGA andVGA Cards

• 640x350 pixels, 16 cobs (BIOS code: 10H)

The VGA card offers the following graphic modes:

• 640x480 pixels, 2 colors (BIOS code: IlH)

• 64Ox480 pixels, 16 colors (BIOS code: 12H)

• 320000 pixels, 256 colors (BIOS code: 13H)

Some EGA cards have even more modes with higher resolution or more colors,
but these modes are not part of the EGA standard and are supported by only a few
programs.

It is somewhat difficult to talk about a "standard", because almost every
manufacturer has their own modes. Let's look at the lowest common
denominator-the modes which practically all EGA/VGA cards support. These are
the modes supported by the original EGA card, the mM EGA.

These video modes, in which the video RAM can occupy more than lOOK, show a
structure quite different from those used by the MDA, eGA and Hercules cards.
The maximum of 256K of RAM is divided into four bit planes which are arranged
in a kind of a three-dimensional organization. From the processor's point of view
these bitplanes reside between segment addresses AOOOH and BOOOH.

Each bitplane contains one bit for each individual pixel. Ifyou place the bitplanes
on top of each other, each pixel is represented by a total of four bits, which
together make up the color value of the pixel. Bitplane zero contains bit zero of
the color value of each pixel, bitplane one contains bit one, and so on. This limits
the number of displayable colors to 16, since four bits (or bitplanes) can represent
~,or 16 different numbers.

The color value obtained from combining individual bitplanes does not correspond
directly to a color. It is actually used as an index into one of the 16 palette
registers of the EGA card, each of which designates a particular color. Since the
EGA card can display a total of 64 different colors, the palette registers allow you
to select 16 of these colors to be displayed on the screen simultaneously. The
individual palette registers can be loaded with the help of the extended EGA BIOS
functions, as described in Section 7.4.

The structure of each bitplane corresponds to the organization of the pixels on the
screen, and parallels that of video RAM in text mode. Since each pixel occupies
one bit in the bitplane, eight consecutive pixels are combined into a byte. The
pixels on each line are placed left to right in successive memory locations. The
length of each line can be determined using the fonnula:

horizontal_resolution / 8

521

10. Accessing and Programming the Video Cards PC System Programming

Since the individual screen lines follow each other in sequence starting from the
top of the screen, the starting address of each line is obtained by multiplying the
line number by this value. The byte within this line which contains the desired
pixel is calculated by dividing the column number by eight (bits per byte). Adding
this to the starting address of the line gives us the following formula, which
calculates the offset address of the byte containing the coordinates (X, Y):

Y * (horizontal_resolution / 8) + X / 8

X columns

AOOO:OOOO
Y lines

Vdeo Display Monitor

Bitplane arrangement on EGA card

The bit number at which the pixel is located in this byte results from the
remainder of the division of the column number by eight:

7 - (column_number MOD 8)

These two formulas can be used to localize a pixel within a bitplane and
implement graphics primitives.

However, the bitplanes cannot be accessed individually because they all lie at the
identical segment address. The EGA card has four latch registers, each of which
contains a complete byte from one of the four bilplanes. When the CPU performs
a read access from the EGA video RAM at segment address AOOOH, one byte is
frrst read from each of the four bitplanes at the specified offset address and loaded
into the four latch registers. This applies to instructions which access memory

522

AbacIU 10.5 EGAandVGACards

directly, such as MOY or LODS, as well as all insttuctions in which a byte from
the video RAM appears as an operand. This can be the case with arithmetic
insttuctions (ADD, SUB, OR, AND, etc.) and comparison instructions (CMP,
CMPS).

The process is similar for writing bytes to the video RAM. In this situation the
contents of the four latch registers are written back to the four bitpJanes.

bits 01234567
n ..

CPU
J

read
access LATCHES

BITPLANES

Video RAM access-loading the foUT latch registers

bitStO~1~~23§4~5~6~7~~~~~~~~~~~~~~~lIn
cPu~ }
write v _
access LATCHES

BITPLANES

Video RAM access-writing the foUT latch registers

Since the latch registers are not directly accessible to the processor, we must
alternate conversion between eight and 32 bits when reading and writing the video
RAM. When reading, 32 bits from the latch registers must be compressed into one
byte, while the eight bits from the CPU when writing must be divided among the
32 bits of the latch registers. The nine graphic controller registers in the EGA card
perform this conversion.

523

10. Accessing and Programming tlul Video Cards PC System Programming

EGA graphic controller registers and their default values
Registe! Meaning Default
OOH Set I Reset OOH
OlH Enable Set I Reset OOH
02H Color COlllpare OOH
03H Function Select OOH
04H Read Map Select OOH
OSH Mode OOH
06H Miscellaneous varies
07H Color Don't Care OFH
OSH Bit Mask FFH

Access to these registers is similar to CRTC register access on the Hercules
graphics card. Here too there is an address register at port address 3DEH, into
which we must fJrSt load the number of the register in the graphics controller that
we want to access. The value for this register can then be written to the data
register located at address 3CFH, immediately after the address register. These ports
do not have to be accessed separately: A 16-bit OUT instruction to the address
register performs the access in one move. The AX register, which will be sent to
this port, must contain the register number in the low-order byte (AL), and the
value for this register in the high-order byte (AH). Although values can be loaded
into the graphics controller registers in this manner, it is not possible to read data
from the EGA card.

The contents of register number five, the mode register, are responsible for the
behavior of the video RAM. This register controls the current read and write
modes and thereby the manner in which the data from the latch registers is
combined with the other registers in the graphics controller and the CPU data.

7 6 S 4 3 2 1 0 bit --.---,

Write mode
Possible modes:
0, 1 and 2
Read mode

'------.... Posslble modes:
o and 1

Mode register structure in EGA card graphics controller

There are a total of two different read modes and three write modes.

524

Abacus 10.5 EGA and VGA Cards

Read mode 0

Read mode 0 is the simpler of the two read modes. As usual, a read access in this
mode first loads the specified byte from the four bitplanes into the four latch
registers. Then the contents of the latch register specified by the lower two bits of
the read map select register (register four) are tramferred to the CPU.

bits

0
3 5

:0:
7 -1 ,

CPU 2
ead 3r 0 r

aecess LATCHES

BITPLANES"
XXXXXX 00
Read Map

Select Register
Video RAM read access in read mode 0

The following sequence of assembly language instructions fmt sets read mode 0,
then writes the value 2 into the Read Map Select register, and fmally reads a byte
from offset address 0003H in the video RAM. As a result, the AL register contains
the bit values for the pixels with coordinates (24, 0) to (31, 0) from bitplane 2.

mov dx,3CEh ;port address of the graphics oont. addr. reg.
mov aX,0005h ;write read mode 0 in the mode register
out dX,ax
mov aX,0204h ;write the value 2 (plane number) in the
out dx,ax ;read map select register
mov aX,OAOOOh ;segment address of the video RAM
mov ds,ax ;to DS
mov si,0003h ;offset address into the video RAM
lodsb ;read byte from plane 2

Read mode 1

Read mode 1 specifies which of the eight pixels in the specified byte of video
RAM is set to a certain color. This is determined by the individual bits in the read
byte which correspond to the one of the eight pixels from the specified byte in the
video RAM. If a pixel has the specified color (appropriate bit map), then the
corresponding bit will be I, else O. The bit pattern of the color to be compared
must be loaded into the lower four bits of the Color Compare register. The lower
four bits of the Color Don't Care register show which bitplanes will be taken into
consideration in the comparison. The value 1 includes the given plane in the
comparison, while the value 0 excludes it.

S2S

10. Accessing IJ1Id Programming tlu! Vicko Cards PC System Programming

BITPLANES

t3
tP

~--------------~ ~

1111
Color don't care

register
11

o
Color Compare

Register

To CPU~

Video RAM read access in read mode 1

The following program sequence determines which of the pixels between
coordinates (0, 0) and (7. 0) have color value five. First. read mode 1 is set by the
Mode register. Then the color value to be tested (five) is loaded into the Color
Compare register. We must also load the Color Don't Care register with the value
Illlb so that all four bitplanes will be included in the comparison. However. this
is the default value and we have not loaded any other value into this register, so we
can skip this step. After programming the registers of the graphics controller, we
load the segment and offset addresses of the pixels to be compared into the OS and
SI registers. Then the read is executed from the video RAM.

526

Abacus 10.5 EGA andVGA Cards

mov dx,3CEh ;port address of the graphics cant. addr. reg.
mov aX,080Sh ;write read mode 1 into the mode register
out dx,ax
mov ax,0502h ; write color value 15 into the
out dx,ax ;Color Compare register
mov ax, OAOOOh ;seqment address of the video RAM
mav ds,ax ito OS
xor si,si ;load offset address 0
lodsb ;read and compare pixels,

;return result in AL

Write mode 0

Writing to the video RAM in write mode 0 results in a number of operations, all
of which depend on the contents of several registers. The contents of the Bit Mask
register determine whether the value of a bit in the four latch registers will be
written unchanged to the found bitplanes or whether it will first be modified. The
individual bits in the Bit Mask register correspond to the individual bits in the four
latch registers. If a bit in the Bit Mask register is 0, the corresponding bits in the
latch registers will be written to the bitplanes unchanged. If this bit is I, a
modification will take place, dependent on the contents of the Function Select
register. As the following figure shows, the bits can be replaced or modified with
the logical operations AND, OR, and XOR.

1 6 5 4 3 2 1 Obit
-....,-

"-------tComparison modes
OOb = Replace
01 b =AND comparison
1Db =OR comparison
11 b =XOR comparison

Function Select Register structure in EGA card graphics controller

The contents of the Enable Set/Reset register determines from where the other
operand in these operations will come. If the lower four bits contain the value I,
the other operand will come from the lower four bits of the Set/Reset register.
Each of these bits is then combined with the bits from the latch registers as
described by the contents of the Function Select register. All of the bits to be
modified from latch register 0 will then be operated on with bit 0 of the Set/Reset
register. In the same manner, all of the bits to be modified from latch registers I,
2, and 3 are combined with bits 1,2, and 3 of the Set/Reset register, respectively.
The byte which is actually written to the graphics controller becomes irrelevant at
this point-the write access is reduced to a trigger, which cannot have any direct
influence on the contents of the latch register (and therefore the bitplanes).

527

10. Accessing and Programming the Video Cards PC System Programming

Latch to Latch n Latch t2 Latch .3

Bl.tmaskRJj[[:1(j(J(jo I .. : " " i" Oi ~ & l~ :]..
I

Dset/AeoeI: l1!Cj!.st.e<" liD~ W
J

lD-<:R caacarison

E\rdJm
sela::t
ra#er

Byte in: Bitplane #0 Bitplane ill Bitplane #2 Bitplane #3

Write access to video RAM (write mode 0) when Enable Set/Reset register
contains a value o/OOOOllll(b)

The following assembly language fragment assigns the pixels at coordinates (5, 0)
and (7, 0), found at offset address OOOOH in the video RAM, the color 1 011 (b).

Since we don't want to change the color of the other pixels, the contents of the
byte are flfSt read into the latch register with a read access to the video RAM. It is
not important which read mode is active because the byte transmitted to the CPU
is irrelevant; all we are interested in is loading the latch register. Since only bits 0
(coordinates (7,0» and 2 (coordinates (5, 0» will be changed, we load the value
00000101b (05h) into the bitmask register. In the Function Select register we
write the value 0 because we want to replace bits 0 and 2 with a new bit
combination. We write the color we want to give to the two bits (1OIIb = OBh) in
the Set/Reset register. We must also write the value I 111(b) (OFH) to the Enable
Set/Reset register of the graphics controller so that the color value will be taken
from the Set/Reset register. We can then execute the write access to video RAM.

mov ax,OAOOOh ;segment address of the video RAM

mov ds,ax Ito DS

xor bx,bx ;load offset address 0

mov aI, [bx] ;load byte 0 in the latch register

mov dx,3CEh ;port address of the graphic cont. addr. reg.

mov ax,0005h ;read mode 0, write more 0

out dx,ax ;write in the mode register

moval,03h ;write 0 in the Function Select register

out dx,ax

mov aX,050Bh ;write bit mask in the bitmask register

out dx,ax

mov ax,OBOOh ;write new color value in the Set/Reset register

out dx,ax

mov aX,OFOlh ;write Illlb in the Enable Set/Reset register

out dx,ax

mov [bx] ,al ;trigger latch register

Things are different when the Enable Set/Reset register contains the value zero. In
this case all of the bits to be modified from the four latch registers are combined
with the CPU byte latch by latch. Here again the type of operation perfonned

528

Abacus 10.5 EGA and VGA Cards

depends on the contents of the Function Select register. For example, if the OR
operation is selected and bits 1,2,4, and 6 are to be modified, than these bits of
all four latch registers will be individually ORed with bits 1,2,4, and 6 in the
CPU byte.

Latch to Latch i1 Latch t2 Latch #3

mifl~~'~;~M~i~J~~~Jlt~J'~p~U~~r-~~~ll~U~~~·~~~.~~

H J H H

Byte in: Bitplane j/.O Bitplane n Bitplane j/.2 Bitplane j/.3

Write mode 1

Write mode 1 is quite simple compared to the complex operations of write mode O.
The contents of the registers and the CPU byte are irrelevant because the contents
of the four latch registers are loaded unchanged into the specified offset address
within the four bitplanes. This is useful for copying the color values of eight
successive pixels to eight other pixels, for instance. The byte containing the eight
pixels can be read under one of the read modes, placing it in the latch registers.
Then a write access can be made to the byte in video RAM to which you want to
copy the color values. The graphics controller will automatically copy the contents
of the latch registers to the specified position within the four bitplanes.

To write these color values to other locations, you can use additional write
accesses. No more read accesses are necessary, since the latch registers already
contain the appropriate values and their contents are not changed by the write
access.

Write mode 2

Write mode 2 resembles a combination of the various modes of write mode O. As
in write mode 0, the bitmask register detennines which bits will be taken directly
from the latch registers and which will be modified. The manner in which these
bits are manipulated is again determined by the mode selected in the Function
Select register. The lower four bits of the CPU byte will be combined with the

529

10. Accessing and Programming the Video Cards PC System Programming

latch registers, independent of the Enable Set/Reset register. Bit zero of the CPU
byte is combined with all bits in latch register zero which are to be modified. The
same applies for CPU bits 1,2, and 3, which are combined with the bits of latch
registers 1,2, and 3, respectively.

Latch to Latch t1 Latch t2 Latch t3

Bibmsl<.
ICJaOOCi ... : ~ M·j

I
... :r~ . .1,,-.1.

0: 1 r~ '" .~ o! '" :]

I

CPU l!r1:e ~ll
II °lll W It

1O-<:R Ca'rIlarison

IJ<lJ<lJ 10
F\n:t.Im- (l){1

register

Byte in: Bitp1ane '0 Bitp1ane '1 Bitplane .2 Bitplane #3

Write access to video RAM in write mode 2

This mode is good for setting the colors of individual pixels, as we demonstrated
in the example in write mode O. In contrast to write mode 0, the assembly
language fragment is somewhat shorter because neither the Enable SetIReset nor
the Set/R.eset register has to be programmed. Here is the same example using write
mode 2:

mov aX,OAOOOh ;segment address of the video RAM
mov ds,ax ;in DS
xor bx,bx ;load offset address °
mov aI, [bx] ;load byte ° in the latch registers
mov dx,3CEh ;port address of the graphics cont. addr. reg.
mov aX,020Sh ;read mode 0, write mode 2
out dx,ax ;write into the mode register
mov ax,0003h ;write REPLACE mode (0) in the Function
out dx,ax ;Select register
mov ax,OS08h ;write the bit mask to the bitmask register
out dX,ax
mov al,OBh ;new color value in AL
mov [bx] , al ;and from there to the video RAM and

;into the latch regs and bitplanes

Demonstration program

The following program demonstrates the following basic graphics routines:

Calculating the position of a pixel within the video RAM

Setting the color of a pixel

Reading the color of a pixel

• Filling the entire video RAM with a color

SJO

Abac/lS 10.5 EGAandVGA Cards

If you have followed this section closely, especially the material on the read and
write modes, you won't have any problems following the logic of the various
functions. Since it contains detailed documentation, we won't say anything more
aboutiL

It should be noted that the program is intended for demonstration purposes only.
You can develop it further if you want to make a graphics library out of these
functions. For example, the function PIXPTR loads the segment address of the
video RAM into the ES register for calculating the position of a pixel within the
video RAM each time it is called. This can be eliminated by loading this address
into the register once at the beginning of the program and leaving it there, as long
as the other functions do not change this register.

The graphics controller register programming can also be improved. Here the
various registers are reloaded with the ROM-BIOS default values after the function
has completed. This can be eliminated as long as you do not use the BIOS
functions for character output (in the graphics mode) or the functions for setting
and testing points within the module or program. If you avoid these calls, then
these registers can be reset to their default values once at the end of the program
instead of at the end of each routine.

Assembler listing: VEGA.ASM

;*******************************.**************************************:
;* VEGA *:
:*--*:
;* Task : Creates elementary functions for accessinq the *;
;* qraphic modes on an EGA/VGA card *;
:*--*:
;* Author : MICHAEL TISCHER *;
;* Developed on : 10/3/1988 *;
; * Last update : 6/19/1989 *;
:*--*:
;* Assembly : MASH VEGA; *;
;* LINK VEGA; *;
:*--*;
;* Call : VEGA *;
;**;

;-- Constants ---=====-====---=========-------==-----------======--=====

VIC SEG = OAOOOh ;Seqrnent address of video RAM
;in qraphic mode

LINE LEN - 80 ;Every qraphi line in EGA/VGA qraphic
;modes require 80 bytes

BITMASK REG - 8 ;Bitmask reqister
MODE REG - 5 ;Mode reqister
FUNCSEL REG - 3 ;Functlon select register
MAPSEL REG - 4 ;Map-Select reqister
ENABLE-REG = 1 ;Enable Set/Reset reqister
SETRES REG = 0 ;Set/Reset reqister
GRAPH CONT = 3CEh ;Port addressd of qraphic controller
OP_MODE = 0 ;Comparison operator mode:

OOh - Replace
08h - AND comparison
10h ~ OR comparison
18h - EXCLUSIVE OR comparison

;BIOS code for 640x350-pixel

531

10. Accessing and Programming the Video Cards 	 PC System Programming

i16-color graphic mode
- 03h iBIOS code for 80*25-char.

itext mode

; == Stack ----==~==--------------------------------=--

stack 	 segment para stack ;Definition of stack segment

dw 256 dup (?) ; 256-word stack

stack 	 ends ;End of stack segment

; == Data ==--========-=....=-=---=---==-----===-----=-===
data 	 segment para 'DATA' ;Definition of data segment

;-- Data for the demo program -=====-~====-=-----------=----=--==-----

initm db 13,10
db "VEGA (c) 1988 by Michael Tischer"

db 13,10,13,10
db "This demonstration program operates only with an EGA/",13,10

db "card and a hi-res monitor. If your PC doesn't have this",13,10
db "configuration, please press the <s> key to abort the",13,10
db "program.",13,10

db "Press any other key to start the program.",13,10,"S"

data 	 ends ;End of data segment

;~= Code ======-=====--======-======-----------------=======-=-=----===

code 	 segment para 'CODE' ;Definition of code segment

assume cs:code, ds:data, es:data, ss:stack

i== Demo program ==========~-=======-=------==-==----==-=====-=--===----

demo 	 proc far

mov ax, data iGet segment addr. from data segment
mov ds,ax iand load into DS
mov es,ax iand ES

Display opening message and wait for input --------------

mov ah,9 ;Function number for string display
mov dX,offset initm ;Message address
int 21h ;Call DOS interrupt

xor ah,ah ;Get function number for key
int 16h ;Call BIOS keyboard interrupt
cmp al/"s" ;Was <s> entered?
je ende ;YES --> End program
cmp al,"S" ;Was <5> entered?
jne startdemo ;NO --> Start demo

ende: 	 mov ax,4COOh ;Function no. for end program
int 21h ;CaU DOS interrupt 21H

Initialize graphic mode ---------------------------------

startdemo label near

mov ax,GR_640_3S0 ;Initialize 64x3S0-pixel
int 10h ;16-color graphic mode

532

Abac/U 	 105 EGA and VGA Cards

mov ch,OOOIOOOOlb iCOIOr: Blue
mov ax,350 iNumber of raster lines: 350
call fillscr i Fill screen

i-- The program displays two squares on the screens (the
;-- second is really a copy of the first) until the user
;-- presses a key to end the program

xor ch,ch ; Set color to 0
dl: mov ax,IOO ;Starting line of first square

inc ch ; Increment color

and ch,15 ;AND bits 4 and 7

d2: 	 mov bx,245 iStarting column of first square
d3: 	 call setpix ;Set pixel

push cx ; Save -color
call getpix ;Get pixel color
push ax iPush coordinates onto stack
push bx
add bx,lOO ;Compute position of second
add ax,IOO ; square
call setpix ;Set pixel of copy
pop bx ;Return coordinates of first square
pop ax
pop cx iGet color
inc bx ;Increment column
cmp bX,295 ;Reached the last column?
jne d3 ;NO --> Set next pixel

inc ax iYES, Increment line
cmp ax,150 iReached the last line?
jne d2 ;NO --> Work with next line

mov ah,l ;Read keyboard
int 16h ;Call BIOS keyboard interrupt
je dl ;No key pressed --> Continue

mov ax, TX_BO_25 ;BOx25 text mode

int lOh ; Initialization

jmp short ende ; End programm

demo 	 endp

;== Functions used in the demo program =--------------==---=============

;-- PIXPTR: Computes the address of a pixel within video RAM for the
;-- new EGA/VGA graphic modes
;-- Input AX = Graphic line
;-- BX = Graphic column
;-- OUtput ES:BX - Pointer to the byte in video RAM containing pixel
;-- CL = Number of right shifts for the byte
;-- - Number of byte shifts in ES:BX needed to isolate

the pixel
;-- AH - Bitmask for combining with all other pixels
;-- Registers: ES, AX, BX and CL are change~.

pixptr 	 proc near

push dx ;Push DX onto stack

mov cl,bl ;Save low byte of graphic column
mov dx,LINE_LEN ;Number of bytes per line to DX
mul dx ;AX = graphic line * LINE_LEN
shr bx,l ;Shift graphic column three places to
shr bx,l ;the right, divide by B

533

10. Accessing and Programming the Video Cards PC System Programming

shr bx,l

add bx,ax ;Add line offset

mov ax,VIO_SEG ; Load segment address of video RAM
mov es,ax ; into ES

and cl,7 ;And bits 4 - 7 of graphic column
xor cl,7 ;Turn bits 0 - 3 then

;subtract 7 - CL
mav ah,l ;After shift, bit 0 should be

;left alone

pop dx ;Pop DX off of stack
ret ; Back to caller

pixptr endp

i-- SETPIX: Sets a graphic pixel in the new EGA/VGA graphic modes -----
i-- Input AX - graphic line
i-- BX - graphic column
i-- CH - pixel color
;-- OUtput none
;-- Registers: ES, DX and CL are changed

setpix proc near

push ax ;Push coordinates onto
push bx ;the stack

call pixptr ;computer pointer to the pixel

;Load port addr. of graphic controller

;-- Set bit position in bitmask register --------------------

shl ah,cl ;Mask for bit to be changed
mov al,BITMASK REG ;Move bitmask register from AL
out dx,ax - ;Write to register

;-- Set read mode 0 and write mode 2 -- ---------------------

mov ax, MODE_REG + (2 shl 8) ;Reg. no. and ,made value
out dx,ax ;Write in the register

;-- Define comparison mode between preceding latch ----------
;-- contents, and CPU byte ----------

mav aX,FUNCSEL REG + (OP MODE shl 8) ;Write register number
out dx,ax - land comparison operator

;-- Pixel control

mov al,es: [bxj ; Load latches
mav es:[bx],ch ;Move color into bitplanes

;-- Set altered registers to their default (BIOS)
;-- status

mov ax,BITMASK_REG + (OFFh shl 8) ;Set old bitmask
out dx,ax ;Write in the register
mov ax,MODEYEG ;Write old value for for mode register
out dx,ax ; into register
mov ah,FUNCSEL_REG ;Write old value for function select
out dx,ax ;register into register

534

Abacus 	 105 EGA andVGA Cards

pop bx ;Pop coordinates off of stack

pop ax ,

ret ; Back to caller

setpix 	 endp

;-- GETPIX: Places a pixel's color in one of the new EGA/VGA ----------
;-- graphic modes
;-- Input AX - graphic line
;-- BX = graphic column
;-- Output CH - graphic pixel color
;-- Registers: ES, OX , ex and 01 are changed

getpix 	 proc near

push ax ;Push coordinates onto

push bx ;the stack

call pixptr ;Computer pointer to pixel
mov ch,ah ;Move bitmask to CH
shl ch,cl ;Shift bitmask by bit positions

mov di,bx ;Move video RAM offset to 01
xor bl,bl ;Color value will be computed in BL

mav dx,GRAPH_CONT ;Load graphic controller port address
mov ax,MAPSEL_REG + (3 shl 8) ;Access bitplane f3

Go through each of the four bitplanes -------------------

gpl: 	 out dx,ax ;Activate bitplane fAH only
mav bh,es: [diJ ;Get byte from the bitplane
and bh,ch ;Omit uninteresting bits
neg bh ;Bit 7 - 1, when a pixel is set
rol bx,1 ;Shift bit 7 from BH to Bit 1 in BL

dec ah ;Oecrement bitplane number
jge gpl ;Not -1 yet? --> next bitplane

;-- The map select register must not be reset, since

;-- the EGA- and VGA-BIOS default to a value of 0

IIIOV ch,bl ;Get color from CH

pop bx ;Pop coordinates off

pop ax ;of stack

ret ; Back to caller

getpix 	 endp

;-- FILLSCR: Sets all screen pixels to one color ------ ---------------
;-- Input AX = number of graphic lines on the screen
;-- CH - pixel color
;-- Output none
;-- Registers: ES, AX, CX, 01, OX and BL are changed

fillscr 	 proc near

mov dx,GRAPH CONT ;Load graphic controller port address
mav al,SETRES REG ;Numbmer of Set-/Reset registers
mav ah,ch - ;Move bit combination to AL
out dx,ax ;Write to the register

mav aX,ENABLE REG + (OFh shl 8) ;Write OFH in the

out dX,ax - ;Enable Set-/Reset register

mav bX,LINE LEN / 2 ;Length of a graphic line / 2 into ax
mul bx - ;Multiply by number of graphic lines
mov cx,ax ;Move to CX as repeat counter
xor di,di ;Address first byte in video RAM
mav ax,VIO_SEG ;Segment address of video RAM

535

10. Accessing and Programming the Video Cards PC System Programming

mov
cld
rep

es,ax

stosw

;Load into ES
;Increment on string instructions
; Fill video RAM

;-- Return old contents of Enable Set-/Reset register

rnov
rnov
out

<lx, GRAPH CONT
ax, ENABLE_REG
dX,ax

;Load graphic controller port address
;Write OOH in Enable Set-/
;Reset register

ret ; Back to caller

fiUscr endp

; End -=---....-------'""--------------------=---------
code ends

end demo
;End of code segment
;Start program execution with DEMO

536

• • •

Abacus 10.6 Determining tlu! Video Card Type

10.6 Determining the Type of Video Card

Whenever you want to access video card hardware or use a BIOS function which is
only available in special versions of the BIOS, you should first ensure that the card
in question is actually installed in the system. If your program doesn't make such a
test, then the result may not be what you wanted to appear on the screen.

It is especially important for an application program to recognize the type of video
card installed, if your program is supposed to work the same on all types of cards
while still directly accessing video hardware. The output routines need this
information to make optimum use of the special properties of the given card

Remember that the PC can have both a monochrome video card (MOA, HOC or
EGA with a monochrome monitor) and a color video card (EGA, VGA, or CGA)
installed, although only one of the two cards may be active at one time.

Combinations allowable for PC video cards
VGA EGA HGC CGA MDA

VGA

• • •EGA
• •

HGC
CGA

• • •
MDA • • •

We need to find out what video cards are installed. There are no BIOS or DOS
functions for doing this, nor are there any variables we can read. We have to write
an assembly language routine which checks the existence of different video cards.
We can refer to the documentation for the various cards, since most manufacturers
include some procedure for determining if their card is in use. It is important to
keep the test specific (Le., it does not return a positive result if a certain type of
video card is not installed). This presents problems for EGA and VGA cards, which
can emulate CGA or MOA cards with the appropriate monitor, and are difficult to
distinguish from true CGA or MOA cards.

All of the tests described here are found at the end of this section in the fonn of
two assembly language programs intended for use with C and Pascal programs.
The functions place the type of video card installed and the type of monitor
connected to it into an array to which the function is passed a pointer. If two video
cards are installed, their order in the array indicates which one is active.

The following cards can be detected by the assembly language routine:

MDAcards

CGAcards

HGCcards

537

10. Accessing and Programming the Video Cards PC System Programming

EGA cards

VGAcards

Since the assembly language routine checks selectively for the existence of a
certain video card, there is a separate subroutine for each type of video card. It bears
the name of the video card for which it tests. These routines have names like
TEST_EGA, TEST_ VGA, etc. The tests could be called sequentially, but certain
tests can be excluded if we know they would return a negative result This is case
for the eGA test, for example, if an EGA or VGA card has already been detected
and is connected to a high-resolution color monitor. A eGA card cannot be
installed alongside such a card, so there is no point in testing for it.

There is a flag for each test which determines whether or not the test will be
performed. Before the ftrst test, the VGA test, all of the flags are set to 1 so that
all of the tests will be performed in order. During the testing, certain flags can be
set to 0 for reasons mentioned above, and the corresponding tests will not be made.

VGA test

The tests begin with the VGA test. It is very easy because there is a special
function in the VGA BIOS, sub-function OOH of function IAH, which returns
precisely the information that the assembly language routine needs. The
information is available only if a VGA card and hence a VGA BIOS is installed.
This is the case if the value lAH is found in the AL register after the call. If the
test routine encounters a different value there, the VGA test will be terminated and
the other tests will be performed. This indicates that a VGA card is lli21 installed.

After this function is called, the BL register contains a special device code for the
active video card and the BH register contains a code for the inactive card. The
following codes can occur:

Code MeaniJ!C.i
OOH No video card
OlH MDA card/monochrome monitor
02H CGA card/color monitor
03H Reserved
04H EGA card/h~h-resolution monitor
OSH EGA card/monochrome monitor
06H Reserved
07H VGA card/analog monochrome monitor
OSH VGA card/analo~color monitor

These codes are separated into values for the video card and the monitor connected
to it, and loaded into the array whose address is passed to the assembly language
routine. Since this routine already has information about both video cards, the
following tests do not have to be performed. The routine executes the monochrome
test, however, if the functions discover a monochrome card, since it cannot
distinguish between an MDA and HOC card.

538

Abacus 10.6 De~rmi1ling the Video Card Type

EGA test

After the VGA test comes the EGA test, which it performed only if the VGA test
was unsuccessful, and thus the EGA flag was not cleared. It uses a function which
is found only in the EGA BIOS: sub-function 10H of function 12H. If no EGA
card is installed and this function is not available, the value lOH will still be found
in the BL register after the function call. In this case the EGA test ends.

If an EGA card is installed, the CL register will contain the settings of the DIP
switches on the EGA card after the call. These switches indicate what type of
monitor is connected. They are converted to the monitor codes the assembly
language routine uses and placed in the array along with the code for the EGA card.
The CGA or monochrome test flag is cleared depending on the type of monitor
connected. The EGA routine ends.

CGA test

If the CGA flag has not been cleared by the previous tests, the CGA test follows
the EGA test. As with the monochrome test, there are no special BIOS functions
which can be used and we have to check for the presence of the appropriate
hardware. In both routines this is done by calling the routine TEST_6845, which
tests to see if the 6845 video controller found on these cards is at the specified port
address. On a CGA card this is port address 3D4H, which is passed to the routine
TEST_6845.

The only way to test the existence of the CRTC at a given port address is to write
some value (other than 0) to one of the CRTC registers and then read it back
immediately. If the value read matches the value written, then the CRTC and thus
the video card are present. But before writing a value into a CRTC register, we
should stop to consider that these registers have a major impact on the
construction of the video signals and careless access to them can not only
thoroughly confuse the CRTC, it can even harm the monitor. Registers 0 to 9 are
out of the question for this test, leaving us with registers 10 to 15, all of which
have an effect on the screen contents. The best we can do is registers 10 and 11,
which control the starting and ending lines of.the cursor.

'The assembly language routine fIrst reads the contents of register 10 before it loads
any value into this register. After a short pause so that the CRTC can react to the
output, the contents of this register are read back. Before the value read is compared
to the original value, the old value is fIrSt written back into the register so that the
test disturbs the screen as little as possible. If the comparison is positive, then a
CRTC is present and so is the video card (eGA in this case). The CGA routine
responds by loading the code for a color monitor into the array, since this is the
only type of monitor which can be used with a CGA card.

539

10. Accessing and Programming the Video Cards PC System Programming

Monochrome test

The last test is the monochrome test, which also checks for the existence of a
CRTC, this time at port address 3B4H. If it fmds a CRTC there, then a
monochrome card is installed and we have to figure out if it is an MDA or HOC
hard. The status registers of the two cards, at port address 3BAH, are used to
determine this. While bit 7 of this register has no significance on the MDA card
and its value is thus undefined, it contains a 1 on an HOC card whenever the
electron beam is returning across the screen. Since this is not permanent and
occurs only at intervals of about two milliseconds, the contents of this bit
constantly alternates between 0 and 1.

Hercules

The test routine frrst reads the contents of this register and masks out bits 0 to 6.
The resulting value is used in a maximum of 32768 loop passes, where the value
is read again and compared with the original value. If the value changes. meaning
that the state of bit 7 changes, then an HOC card is probably installed. If this bit
does not change over the course of 32768 loop passes, then an MDA card is in
use.

Here again we place the appropriate code for the video card in the array. The
monitor code is also set to monochrome, since this is the only monitor which can
be connected to an MDA or HOC card.

Primary and secondary video systems

The tests are now over. Now we have to figure out which card is active (primary)
and which is inactive (secondary). If the outcome of the VGA test was positive. we
can skip this because the VGA BIOS routine determines the active card
automatically.

In other cases we can determine the active video card from the current video mode.
which can be read with the help of function OFH of the BIOS video interrupt. If
the value seven is returned, then the 80x25 text mode of the monochrome card is
active. All of the other modes indicate that a CGA. EGA. or VGA card is active.
This information is used to exchange the order of the two entries in the array if it
does not match the actual situation.

The assembly language routine returns control to the calling program.

Here we include C and Pascal programs which call the function GetVIOS from the
assembly language module. and demonstrate how GetVIOS works.

540

AbaclLf 10.6 Ddermining tile Video Card Type

C listing: VIOSC.C

1*** *****************/
1* v I 0 S C *1
1*--*1
1* Task : Determines the type of video card and monitor *1
1* installed in the system. *I
1*--*1
1* Author MICHAEL TISCHER *1
1* Developed on : 10/02/1988 *1
1* Last update : 06/20/1988 *1
1*--*1
1* (MICROSOFT C) *I
1* Creation CL lAS Ic VIOSC.C *1
1* LINK VIOSC VIOSCA *1
1* Call VIOSC *1
1*--*1
1* (BORLAND TURBO C) *1
1* Creation Create project file made of the following: *1
1* VJOSC *1
1* VIOSCA.OBJ *1
1* Info Some cards may return errors or "unknown" *1
/****•••••••••••••••• *** ••• *** ••••••••••****•••••••••••••••••••••••••**/

1*-- Declarations of external functions --------------------*1

extern void get_vios (struct vios *);

1*-- Type defs ----=------------------------------==*1

typedef unsigned char BYTE; 1* Create a byte *1

1*-- Structures ---=-*1

struct vios 1* Describes video card and attached monitor *1
BYTE vcard,

monitor;
/;

1*-- Constants ------------=-----------=--=---------=---=-=---*1

1*-- Constants for the video card ------------------------------------*1

'define NO VIOS 0 1* No video card *1
'define VGA 1 1* VGA card *1
'define EGA 2 1* EGA card *1
'define MDA 3 1* Monochrome Display Adapter *1
'define HGC 4 1* Hercules Graphics Card *1
'define CGA 5 1* Color Graphics Adapter *1

1*-- Constants for monitor type --------------------------------------*1

'define NO MON 0 1* No monitor *1
'define MONO 1 1* Monochrome monitor *1
'define COLOR 2 1* Color monitor *1
'define EGA HIRES 3 1* High-res/multisync monitor *1
'define ANr.G MONO 4 1* Analog monochrome monitor *1
'define ANLG:COLOR 5 1* Analog color monitor *1

/****••••••** ••***************••••*.*.******••• **** •••****.*.*.*.*•••**/
1** MAIN PROGRAM **1
/.***•• **••••••***••********.**/

void mainO

static char *vcnames[] - 1* Pointer to the video card name *1

"VGA- ,

-EGA-,

541

10. Accessing and Programming the Video Cards PC System Programming

"MOA",
"HGC",
"CGA"

};

static char *monnames[j 1* Pointer to the monitor type's name *1
"monochrome monitor",
"color monitor",
"high-res/multisync monitor",
"analog monochrome monitor",
"analog color monitor"

} ;

struct vios vsys[2]; 1* Vector for GET_VIOS *1

get vios(vsys); 1* Determine video system *1

printf("\nVIOSC (c) 1988 by Michael Tischer\n\n");

printf("Primary Video System: \s cardl \s\n",

vcnames[vsys[O].vcard-lj, monnames[vsys[Oj .monitor-l]);
if (vsys[l].vcard !- NO VIas) 1* Is there secondary video system? *1

printf("Secondary Video System: \s cardl \s\n",
vcnames[vsys[l].vcard-1j, monnames[vsys[l].monitor-1]);

Assembler listing: VIOSCA.ASM

i*********·**·*****************i
;* VIOSCA *;
i*--*i
;*
;*

Task Creates a function for determining video
adapter and monitor type, when linked with

*;
*;

;* a C program. *;
i*--*;
;* Author MICHAEL TISCHER *;
;* Developed on : 10/02/1988 *;
;* Last update : 06/20/1989 *;
;*-----------------------~--*:
. * Assembly : MASM VIOSCA; *;
;* •.• link to a C program *;
;******************************.*************** •••**** ·****************i

i== Constants for VIOS structure =--=========================---=======

;Video card constants
NO_VIOS - 0 ;No video card
VGA a 1 ;VGA card
EGA = 2 ;EGA card
MDA - 3 ;Monochrome Display Adapter
HGC 4 ;Hercules Graphics Card
CGA = 5 ;Color Graphics Adapter

;Monitor constants
NO_MON 0 ;No monitor
MONO - 1 ;Monochrome monitor
COLOR 2 ;Color monitor
EGA HIRES 3 ;High-resolution or multisync monitor
ANLG MONO - 4 ;Analog monochrome monitor
ANLG COLOR - 5 ;Analog color monitor

;-- Segment declarations for the C program/--------==---======---=====-

IGROUP group text ;Addition to program segment
DGROUP group const, bss, _data ;Addition to data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';This segment includes all read-only
CONST ends ; constants

segment word public 'BSS' ;This segment includes all

542

Abacus 10.6 Determining the Video Card Type

ends ;un-initialized static variables

_DATA segment word public 'DATA' ;Data segment

vios tab equ this byte

;-- Conversion table for return values of function lAH,
;-- sub-function OOH of the VGA-BIOS

db NO VIOS, NO MON ;No video card
db MDA , MONO ;MDA card and monochrome monitor
db CGA , COLOR ;CGA card and color monitor
db ? , ? ;Code 3 unused
db EGA , EGA_HIRES ;EGA card and hi-res monitor
db EGA , MONO ;EGA card and monochrome monitor
db ? , ? ;Code 6 unused
db VGA , ANLG MONO ;VGA card and analog mono monitor
db VGA , ANLG::::COLOR ;VGA card and analog color monitor

equ this byte

;-- Conversion table for EGA card DIP switch settings ------

db COLOR, EGA HIRES, MONO

db COLOR, EGA::::HIRES, MONO

DATA ends

;-= Program --=========--==========-----------==-=-------------------==
TEXT segment byte public 'CODE' ;Program segment

;--
;-- GET VIOS: Determines types of installed video cards ---------------

;-- Call from C : void get vios(struct vios ·vp);

;-- Declaration: struct vios (BYTE vcard, monitor;);

;-- Return value: none
;-- Info This example uses function in SMALL memory model

sframe struc ; Stack access structure
cga possi db ? ;Local variable
ega-possi db ? ; Local variable
monoyossi db ? ; Local variable
bptr dw ;Take BP
ret adr dw ;Return address to caller
vp dw ;Pointer to first VIOS structure
sframe ends ;End of structure

frame equ [bp - cgayossi I ;Address elements of the structure

push bp ; Push BP onto stack
sub sp,3 ;Allocate space for local variables
mov bp,sp ;Transfer SP to BP
push di iPush 01 onto stack

mov frame.cga possi,l ;Could be CGA

mov frame.ega~ssi,l ;Could be EGA

mov frame.mono_possi,l;Could be MDA or HGC

mov di,frame.vp ;Get offset address of structure
mov word ptr [di],NO VIOS ;Still no video
mov word ptr [di+21,NO_VIOS ;system found

call test vga ;Test for VGA card

cmp frame.egayossi,O ;EGA card still possible?

je gvl ;NO --> Test for CGA

543

http:di,frame.vp

10. Accessing and Programming the Video Cards 	 PC System Programming

gvl:
call test ega ;Test for EGA card
cmp frame.cgaJ'Ossi,o ;CGA card still possible
je gv2 ;NO --> Test for MDA/HGC

gv2:
call test cga ; Test for CGA card
cmp frame.monoJ'Ossi,O;MDA or HGC card still possibleh?
je gv3 ;NO --> End tests

call test mono ;Test for MDA/HGC cards

;-- Determine active video card ----------------------------

gv3: 	 cmp byte ptr [di],VGA ;VGA card active?
je gvi end ;YES, active card already determined
cmp byte ptr [di+2],VGA ;VGA card as secondary system?
je gvi_end ;YES, active card already determined

mov ah,OFh ;Determine active video mode using the
int lOh ;BIOS video interrupt

and al,7 ;Only modes 0-7 are of interest
cmp al,7 iMonochrome card active?
jne gv4 iNO, in CGA or EGA mode

;-- MDA, HGC, or EGA card (mono) is active -----------------

cmp byte ptr [di+l],MONO ;MonQ monitor in first structure?

je gvi end ;YES, Sequence o.k.

jmp short switch ;NO, Change sequence

;-- CGA or EGA card currently active -----------------------

gv4: 	 cmp byte ptr [di+l],MONO ;Mono monitor in first structure?
jne gvi_end iNO, Sequence o.k.

switch: 	 mov ax, [di] ;Get contents of first structure
xchg ax, [di+2] ;Exchange with second structure
mov [di],ax

gvi_end: 	 pop di ; Get DI from stack
add sp,3 ; Get local variables from stack
pop bp ; Get BP from stack
ret ;Return to C program

_get_vios 	 endp

;-------------------------------------~---------------------------------
;-- TEST_VGA: Determines whether a VGA card is installed

test_vga 	 proc near

mov ax, laOOh ;Function lAH, sub-function OOH
int 10h ;calls VGA-BIOS
cmp al,lah ;Is this function supported?
jne tvga_end ;NO --> End routine

;-- If function is supported, BH contains the active video
;-- system code; BH contains the inactive video sys. code

mov cx,bx :Move result to ex
xor bh,bh ;Set BH to 0
or ch,ch ;Just one video system?
je tvga_l ;YES --> Convey first system's code

;-- Convert code of second system --------------------------

mov bl, ch ;Move second system code to BL
add bl,bl ;Add offset to table
mov ax, offset DGROUP:vios_tab[bx] ;Get code from table and

544

Abacus 10.6 Determining the Video Card Type

mov [d1+21,ax ;place in caller'. structure
mov bl,cl ;Move first system's codes to BL

;-- Convert code of first system ---------------------------

add bl,bl ;Add offset to table
mov ax,offset DGROUP:vios tab[bxl ;Get code from table and
mov [dil,ax ;pl;ce in caller's structure

mov frame.cqa-POssi,O ;CGA test failed

mov frame.aga-POssi,O ;EGA test failed

mov frame.mono_possi,O ;MONO still needs testing

mov bx,di ;Address of active structure
cmp bYte ptr [bxl,MDA ;Monochrome system available?
je do tmono ;YES --> Execute MDA/HGC test

add bx,2 ;Address of inactive structure
cmp bYte ptr [bxl,MDA ;Monochrome system available?
jne tvga_end ;NO --> End routine

do_tmono: mov word ptr [bxl,O ;Pretend that this system
lis still unavailable

mov frame.mono-POssi,l;Execute monochrome test

tvga_end: ret ;Back to caller

endp

;--
;-- TEST_EGA: Determines whether an EGA card is installed

proc near

mov ah,12h ; Function 12H

mov bl,10h ;Sub-function 10H

int 10h ; Call EGA-BIOS

cmp bl,10h ;Is the function supported?

je tega_end ;NO --> End routine

;-- When this function is supported, CL contains the EGA
;-- card's DIP switch settings

mov al,cl ;Move DIP switch settings to AL
shr al,l ;Shift one position to the right
mov bx,offset·DGROUP:ega dips ;Offset address of table
xlat ;Move element AL from table to AL
mov ah,al ;Move monitor type to AM
mov al,EGA ;It's an EGA card
call found it ;Move data to vector

cmp ah,MONO ;Connected to monochrome monitor?
je is mono ;YES --> not MDA or HGC

mov frame.cqa-POssi,O ;Cannot be a CGA card

jmp short tega_end ;End routine

is_mono: mov frame.mono-POssi,O;If EGA card is connected to a mono
;monitor, it can be installed as
;either an HGC or MDA

taga_end: ret ;Back to callerr

endp

;--
;-- TEST_CGA: Determines whether a CGA card is installed

proc near

S4S

10. Accessing and ProgrQII'IIPUng the Video Cards 	 PC System Progrl111l1lling

mov dx,304h iCGA tests port addr. of CRTC addr.
call test 6845 ireg., to see if 6845 is installed
jc tega_end iNO --> End test

mov al,CGA iYES --> CGA is installed
mov ah,COLOR iCGA has color monitor attached
jmp found_it iTransfer data to vector

;--
i-- TEST_MONO: Checks for the existence of an MDA or HGC card

test_mono 	 proc near

mov dx,3B4h 	 iCheck port address of CRTC addr. reg.
call test 6845 	 iwith MONO to see if there's a 6845

i installed
iNO --> End test

i-- If there is a monochrome video card installed, the
i-- following determines whether it's an MDA or an HGC

mov dl,OBAh ;Read MONO status port using 3BAH
in al,dx
and al,80h ;Check bit 7 only and
mov ah,al imove to AH

;-- If contents of bit 7 change during one of the following
i-- readings, the card is handled as an HGC

mov ex,BOOOh 	 ;Maximum of 32768 loop executionse
test_hgc: 	 in al,dx ;Read status port

and al,80h iCheck bit 7 only
cmp al,ah ;Contents changed?
jne is_hgc ;Bit 7 = I --> HGC
loop test_hgc ;Continue loop

mov al,MDA ;Bit 7 <> 1 --> MDA
jmp set_mono iSet parameters

is_hgc: mov al,HGC ;Bit 7 - 1 --> 1st HGC
set_mono: mov ah,MONO ;MDA!HGC on mono monitor

jmp found it ;Set parameters

test mono 	 endp

;--
i-- TEST_6845: Sets carry flag if no 6845 exists in port address of OX

test 6845 	 proc near

mov al,OAh iRegister 10
out dx,al iRegister number of CRTC address reg.
inc dx ;OX now in CRTC data register

in al,dx iGet contents of register 10
mov ah,al land move to AH

mov al,4Fh ;Any value
out dx,al ;Write to register 10

mov ex, 100 ;Short delay loop--gives 6845 time
wait: loop wait ito react

in al,dx ;Read contents of register 10
xchg al,ah ;Exchange AH and AL
out dx,al ;Send old valuen

cmp ah,4Fh 	 iWritten value read?

546

Abacus 	 10.6 Determining the Video Card Type

je t6845 end ;YES --> End test

stc 	 ;NO --> Set carry flag

t6845_end: 	ret ; Back fran caller

;--
;- FOOND_IT: Transfers video card type to AL and monitor type to

;- AH in the video vector

found it 	 proc near

mov bx,di ;Address of active structure
cmp word ptr [bx),O ;Video system already onboard?
je set_data ;NO -> Data in active structure

add bx,2 ;YES, Address of inactive structure

set data: 	 mov [bx),ax ;Place data in structure

ret ;Back to caller

found it 	 endp

;--

text 	 ends ;End of code segment

end ;End of program

Pascal 	 listing: VIOSP.PAS
{.....•...._... }

{* 	 VIOSP *1
{*---*1
{* 	 Task : Returns the type of video card installed. *1
{*---*1
{* Author MICHAEL TISCHER * 1
{* Developed on 10/02/1988 * 1
{* Last update 06/19/1989 * 1
{*---*1
{* Info Sane of the values given here may not coincide *1
{* with some video cards (e.g., some CGA cards *1
{* may return "Unknown card") • * 1
{..._............................ }

program VIOSP;

{SL c:\masm\viospal { Link assembler module
Change path to suit your DOS needs

const 	NO VIas 0; { No video card
VGA - 1; { VGA card
EGA 2; { EGA card
MDA 3; Monochrome Display Adapter
HGC 4; Hercules Graphics card
CGA = 5; { Color Graphics Adapter

NO_MaN 0; { No monitor
MONO "'" 1; Monochrome monitor
COLOR 2; { Color monitor
EGA HIRES 3; High-resolution monitor
ANLG_MONO 4; Monochrome analog monitor
ANLG_COLOR = 5; { Color analog monitor

type Vios - record Describes video card and attached monitor
Vcard,
Monitor byte;

end;

547

10. Accessing and Programming the Video Cards PC System Programming

Viosptr ~ AVios; I Pointer to a VIOS structure /

procedure GetVios(vp : ViosPtr) external;

var VidSys : arraYI1 •. 2] of Vios; (Array containing video structures /

(******************************••**************************************}
(* PrintSys: Gives information about a video system *)
(* Input - VCARD: Code number of the video card */
(* - MON : Code number of the attached monitor * /
I* Output none * /
{***.****************************}

procedure PrintSys (VCard, Mon : byte);

begin
write (' ');
case VCard of

NO_VIOS : write('Unknown'); (For ·other" code /

VGA write ('VGA');

EGA write ('EGA');

MDA write ('MDA');

CGA write('CGA');

HGC write('HGC');

end;
write (' card/ ');
case Mon of

NO MON write ('unknown monitor'); I For ·other" monitors /
MONO writeln('monochrome monitor');
COLOR writeln('color monitor');
EGA HIRES writeln('high-resolution monitor');
ANLG_MONO writeln('monochrome analog monitor');
ANLG_COLOR writeln('color analog monitor');

end;
end;

{****.**************************************•••************************}
(** MAIN PROGRAM **)
{*.**••• **********************.}

begin
GetVios(@VidSys); (Check installed video card /
writeln ('VIOSP (c) 1988 by MICHAEL TISCHER');
write ('Primary video system: ');
PrintSys(VidSys[l].VCard, VidSys[l].Monitor);
writeln('13flO);
if VidSys[2].VCard <> NO VIOS then Second video system installed?

begin - I YES
write('Secondary video system:');
PrintSys(VidSys[2] .VCard, VidSys[2].Monitor);
writeln(.13.10);

endi
end.

Assembler listing: VIOSPA.ASM

i***·****************i
;* v I 0 SPA *;
;*--*;
;* Task Creates a function for determining the type * ;
;* of video card installed on a system. This * ;
;* routine must be assembled into an OBJ file, *;
;* then linked to a Turbo Pascal (4.0) program. *;
i*--*i
;* Author MICHAEL TISCHER *;
;* Developed on : 10/02/1988 * ;
;* Last update : 06/19/1989 * ;
i*--*i
; * assembly : MASM VIOSPA; *;

548

http:writeln(.13.10

Abacus 10.6 Determining the Video Card Type

; * • •• Link to a Turbo Pascal program *;
;* using the {$L VIOSPA} canpiler directive *;
i******·********···**··******····***·········**·*****·•••••••••••••***.;

;-- Constants for the VIOS structure ----------------------------------

;Video card constants
NO VIOS = 0 ;No video card/unrecognized card
VGA - 1 ;VGA card
EGA - 2 ;EGA card
MDA - 3 ;Monochrome Display Adapter
HGC - 4 ;Hercules Graphics Card
CGA 5 ;Color Graphics Adapter

;Monitor constants
NO MON - 0 ;No monitor/unrecognized code
MONO - 1 ;Monochrome monitor
COLOR ~ 2 ;Color Monitor
EGA_HIRES - 3 ;High-resolution/multisync monitor
ANLG MONO - 4 ;Monochrorne analog monitor
ANLG:::COLOR - 5 ;Analog color monitor

;=- Data segment

DATA segment word public ;Turbo data segment

DATA ends

;"""= Code segment -~=-==:-=---=====--------=--==---==-----...--==-""'===

CODE segment byte public ;Turbo code segment

assume cs:CODE, ds:DATA

public getvios

;-- Initialized global variables must be placed in the code segment ---

vios tab equ this word

;-- Conversion table for supplying return values of VGA
;-- BIOS function lA(h} , sub-function OO(hl

db NO VIOS, NO MON ;No video card
db MnA ,MONO ;MDA card/monochrome monitor
db CGA ,COLOR ;CGA card/color monitor
db , ? ; Code 3 unused
db EGA , EGA_HIRES ;EGA card/hi-res monitor
db EGA , MONO ;EGA card/monochrome monitor
db? , ? ;Code 6 unused
db VGA , ANLG MONO ;VGA card/analog mono monitor
db VGA , ANLG::::COLOR ;VGA card/analog color monitor

equ this byte

;-- Conversion table for EGA card DIP switches ----

db COLOR, EGA_HIRES, MONO
db COLOR, EGA_HIRES, MONO

;--
;-- GETVIOS: Determines type(sl of installed video card(s) ------------

Pascal call : GetVios (vp : Viosptr I; external;
;-- Declaration : Type Vios - record VCard, Monitor: byte;
;-- Return Value: None

getvios proc near

sframe st ruc iStack access structure
egaJlOssi db? ;local variables

549

10. Accessing and Programming the Video Cards PC System Programming

egaJlOssi db ; local variables
monoJlOssi db ; local variables
bptr dw ;BPTR
ret_adr dw ;Return address of calling program
vp dd ? ;Pointer to first VIOS structure
sframe ends ;End of structure

frame equ [bp - egaJlOssi] ;Address elements of structure

push bp ;Push BP onto stack
sub sp,3 ;Allocate memory for local variables
mov bp,sp ;Transfer SP to BP

mov frame. egaJlOssi, 1 ; Is ita CGA?
mov frame.egaJlOssi,l ;Is it an EGA?
mav frame.monoJlOssi,l;IS it an MIlA or HGC?

mov di,word ptr frame.vp ;Get offset addr. of structure
mov word ptr [di],NO VIOS ;No video system or unknown
mov word ptr [di+2],NO_VIOS ; system found

call test vga ;Test for VGA card
crop frame.ega~ossi,O ;Or is it an EGA card?
je gvl ;NO -->Go to CGA test

call test_ega ;Test for EGA card
gvl: crop frame.cgaJlOssi,O ;Or is it a CGA card?

je gv2 ;NO --> Go to MDA/HGC test

call test cga ; Test for CGA card

gv2: crop frame.monoJlOssi,O;Or is it an MDA or HGC card?

je gv3 ; NO --> End tests

;Test for MDAlHGC card

;-- Determine video configuration --------------------------

gv3: crop
je
crop
je

byte ptr
gvi end
byte ptr
gvi_end

[di],VGA ;VGA card?
;YES --> Active card already indicated

[di+2],VGA;VGA card part of secondary system?
;YES -~> Active card already indicated

mov
int

ah,OFh
lOh

;Determine video mode using BIOS video
; interrupt

and
crop
jne

al,7
al,7
gv4

;only modes 0-7 are of interest
;Mono card active?
;NO --> CGA or EGA mode

;-- MIlA, HGC or EGA card (mono) currently active -----------

crop
je
jmp

byte ptr [di+l],MONO ;Mono monitor in first structure?
gvi end ;YES, Sequence o.k.
short switch ;NO, switch sequence

;-- CGA or EGA card currently active -----------------------

gv4: crop
jne

byte ptr [di+l],MONO ;Mono monitor in first structure?
gvi_end ;NO -->Sequence o.k.

switch: mov ax, [di]
xchg ax, [d1+2]
mov [di],ax

;Get contents of first structure
;Switch with second structure

getvios

add sp,3
pop bp
ret 4

endp

;Add local variables from stack
; Pop BP off of stack
;Clear variables off of stack;
;Return to Turbo

550

http:frame.vp

Abac/lS 10.6 Determining the Video Card Type

;--
;-- TEST_VGA: Determines whether a VGA card is installed

proc near

mov ax,laOOh ;Function lA(h), sub-function OO(h)

int lOh ;Call VGA-BIOS

cmp al,lah ;Function supported?

jne tvga_end ;NO --> End routine

;-- If function is supported, BL contains the code of the

;-- active video system, while BH contains the code of

;-- the inactive video system

mov cx,bx ;Move result in CX

xor bh,bh ;Set BH to 0

or ch,ch ;Only one video system?

je tvga_l ;YES --> Display first system's code

;-- Convert code of second system --------------------------

mov bl,ch ;Move second system's code to BL
add bl,bl ;Add offset to table
mov ax, vios tab [bx] ;Get code from table and move into
mov [di+2] ,ax ;caller's structure
mov bl,cl ;Move first system's code into BL

;-- Convert code of second system --------------------------

add bl,bl ;Add offset to table
mov ax,vios tab[bx] ;Get code from table
mov [di] , ax- land move into caller's structure

mov frame.cga-PQssi,O ;CGA test fail?

mov frame.ega-PQssi,O ;CGA test fail?

mov frame.mono-PQssi, a ;Test for mono

mov bx,di ;Address of active structure

cmp byte ptr [bx] ,MDA ;Monochrome system online?

je do_tmono ;YES --> Execute MDA/HGC test

add bx,2 ;Address of inactive structure
cmp byte ptr [bx],MDA ;Monochrome system online?
jne tvga_end ;NO --> End routine

do tmono: mov word ptr [bx],O ;Emulate if this system
;isn't available

mov frame.mono-PQssi,l;Execute monochrome test

; Return to caller

;--
;-- TEST_EGA: Determine whether an EGA card is installed

test_ega proc near

mov ah,l2h ;Function 12(h)

mov bl,lOh ;Sub-function lOCh)

int lOh ;Call EGA-BIOS

cmp bl,lOh ;Is this function supported?

je tega_end ;NO --> End routine

;-- If the function IS supported, CL contains the

;-- EGA card DIP switch settings

mov bl,cl ;Move DIP switches to BL
shr bl,l ;Shift one position to the right
xor bh,bh ;Index high byte to a

551

10. Accessing and Programming 1M Video Cards 	 PC System Programming

mov ah, ega_dips [bxj ;Get element from table
mov al,EGA ;Is it an EGA card?
call found it ;Transfer data to the vector

anp ah,MONO ;Mono monitor connected?
je is_mono ;YES --> Not MDA or HGC

mov frame.cga~ssi,O ;No CGA card possible
jmp short tega_end ;End routine

is_mono: mov frame.mono~ssi,O;EGA can either emulate MDA or HGC,
; if mono monitor is attached

;Back to caller

;--
;-- TEST_CGA: Determines whether a CGA card is installed

test_ega 	 proc near

mov dx,3D4h ;Port addr. of CGA's CRTC addr. reg.
call test 6845 ;Test for installed 6845 CRTC
jc tega:::end ;NO --> End test

mov al,CGA ;YES, CGA installed
mov ah,COLOR ;CGA uses color monitor
jmp found_it ;Transfer data to vector

i--
;-- TEST_MONO: Checks for MDA or HGC card

test_mono 	 proc near

mov dx,3B4h ;Port addr. of MONO's CRTC addr. reg.
call test 6845 ;Test for installed 6845 CRTC
jc tega:::end ;NO --> End test

;-- Monochrome video card installed
;-
mov dl,OBAh ;MONO status port at 3BA(h)
in al,dx ;Read status port
and al,BOh ;Separate bit 7 and
mov ah,al ;move to AH

If the contents of bit 7 in the status port change
;-- during the following readings, it is handled as an
;-- HGC

mov cx,8000h ;maximum 32768 loop executions
test_hgc: 	 in al,dx ; Read status port

and al,80h ;Isolate bit 7
anp al,ah ;Contents changed?
jne is hgc ;Bit 7 = 1 --> HGC
loop test_hgc ; Continue

inov al,MDA ;Bit 7 <> 1 --> MDA
jmp set mono iset parameters

is_hgc: mov al,HGC ;Bit 7 - 1 --> HGC
set_mono: mov ah,MONO ;MDA and HGC set as mono screen

jmp found_it ;Set parameters

test mono 	 endp

i--
;--'TEST_6845: Returns set carry flag if 6845 doesn't lie in the

552

AbacllS 	 10.6 Determining tlu! Video Card Type

;-- port address in DX

test 6845 proc near

mov al,OAh ; Register 10
out dx,al ;Register number in CRTC address reg.
inc dx ;DX now in CRTC data register

in al,dx ;Get contents of register 10
mov ah,al ;and move to AH

mav al,4Fh ;Any value
out dx,al ;Write to register 10

mov ex,lOO ;Short wait loop to which
wait: 	 loop wait ;6845 can react

in al,dx ;Read contents of register 10
xchg al,ah ; Exchange Ah and AL
out dx,al ;Send value

cmp ah,4Fh ; Written value been read?
je t6845_end ;YES --> End test

stc ;NO --> Set carry flag

t6845_end: ret ; Back to caller

test 6845 endp

;--
;-- FOUND_IT: Transfers type of video card to AL and type of
;-- monitor in AH in the video vector

found_it 	 proc near

mov bx,di ;Address of active structure
cmp word ptr [bx],O ;Video system already onboard?
je set_data ;NO --> Data in active structure

add bx,2 ;YES --> Address of inactive structure

set_data: mov [bx] ,ax ;Place data in structure
ret ;Back to caller

found_it endp

;--

code 	 ends ;End of code segment
end ; End of program

553

10. Accessing and Programming the Video Cards PC System Programming

10.7 Accessing Video RAM from High Level Languages

The beginning of this chapter mentioned the option of video RAM access from
high level languages. This would allow the developer to write screen output
routines for high level languages that would execute faster than output commands
available to the languages, BIOS functions, or DOS functions. This option would
be particularly attractive if it meant that we could write these routines without
assembly language programming.

The demonstration programs below implement direct video RAM access routines
which display a string on the screen. Althrough there are some major differences
between the three programs as a result of the differences between the respective
languages (BASIC, Pascal and C), all three programs contain the same elements.

Initialization

Each program includes an initialization routine which determines the segment
address of the video RAM. The routine has a variable which contains the address of
the CRTC address register. There is a direct relationship between the video RAM
and this address register: just as this register is always at port address 3B4H, the
video RAM on a monochrome card is always found at segment address BOOOH.
This combination also applies to color cards, where the address register is at port
address 3D4H and the video RAM is at segment address B800H. If we know the
port address of the CRTC address register, we can determine the segment address of
the video RAM. Once we have determined this address, we can place it in a global
variable and execute the initialization routine.

Output

All three programs have an output routine which uses the segment address we
determined above. Each time the routine displays something, it determines the
starting address of the video page currently displayed on the screen. This ensures
that the output appears on the visible screen, and not on an undisplayed video
page. We can find this from the CRT_START BIOS variable. This variable is
located at address 0040:OO4E, and specifies the offset address of the displayed video
page relative to the video page found at offset address OOOOH.

After this address is determined, we can access the video RAM. The method used in
the program depends on the given programming language. Let's look at each
program in more detail.

The C implementation

From a programming point of view, this is the cleanest of the three
implementations because the video RAM can be treated as a normal variable in C.
We first define the structure VELB, which describes the ASCII/attribute pair as it
appears in the video RAM. We create a new data type, VP, to act as a pointer to
this structure. It is important that this pointer be of type FAR because these

554

Abacus 10.7 Accessing Video RAM from High Level Languages

structures are in the video RAM and therefore outside the C data segment. Smaller
memory models in C require the declaration of this pointer as a FAR pointer.

The global variable VPTR is initialized to be a pointer to the fIrst ASCII/attribute
pair in page 0 of the video RAM. This occurs in the INIT_DPRINT routine. It is
used within the DPRINT function (the function used for display) as the basis for
addressing the characters within the video RAM.

The DPRINT function loads the LPTR pointer with the address of the screen
output position passed to the routine. LPTR is fIrst loaded with the contents of the
global variable VPTR, and then with the offset address of the active video page, as
found in the CRT_START BIOS variable, LP1R must be cast as a BYTE pointer
because the contents of the BIOS variable refers to bytes, and not to VELB
structures. If the cast operator were missing, the C compiler would generate code
which would fIrst multiply the contents of the BIOS variable by the length of the
VELB structure before adding it, resulting in the wrong value.

We can now add the display position to this pointer. The output position is passed
to DPRINT as row and column coordinates. The video RAM is treated as an array
of 2000 components, each of which is a VELB structure. Since we have computed
the base address of the array in LP1R, all we need is to index into it. We multiply
the row coordinate by 80 (columns per line) and then add the column coordinate.
Finally we have a pointer to the output position in video RAM, which we can
treat like any other C pointer.

Each time through, the loop increments the pointer to the next VELB structure.
We write the ASCII code of the character and the color passed to DPRINT to the
specifIed address. This repeats until the program reaches the end of the string.

C listing: DVIC.C

/******.***** ••*****••*****••• ** •••**** ••••****.***.**************•••• */
1* D v I C *1
1*--*1
1* Task : Demonstrates direct access to video RAM. *I
1*--*1
1* Author : MICHAEL TISCHER *I
1* Developed on : 10101/1988 *1
1* Last update : 06/2111989 *I
1*--*1
1* (MICROSOFT C) *1
1* Creation : CL lAS DVIC.C *1
1* Call : DVIC *I
1*--*1
1* (BORLAND TURBO C) *1
1* Creat ion : RUN menu cOJliMnd (no project file needed) *I
/* •• ***••**************************************.******•• ***************/

I*~- Include files -~~~==~~~~~--~==-=-====---~=~-----------==========*I

'include <dos.h>
'include <stdlib.h>
'include <string.h>
'include <stdarg.h>
.include <bios.h>

555

10. Accessing and Programming the Video Cards 	 PC System Programming

/*-- Type definitions ~=--=---~-*/

typedef unsigned char BYTE; /* Create a byte */
typedef struct velb far * VP; /* VP - FAR pointer in video RAM * /
typedef BYTE BOOL; /* similar to BOOLEAN in Pascal */

/*-- Structures ---------- --*/

struct velb { /* Describes a 2-byte position on the screen */

BYTE character, /* ASCII code */

attribute; /* Character attribute */

I;

/-!II<'. Macros ______________*/

/*-- MK_FP creates a FAR pointer to an object from a segment -------*/
/*-- address and offset address -------*/

Hfndef MK FP /* MK FP not defined yet? */
'define MK- FP (seq, ofs) ((void far *) ((unsigned long) (seg) «161 (ofs»)
.endit

'define COLOR(VG, HG) 	 (fVG« 3) + HG)

/*-== Constants 	 _____----====* /_~_===---=:r;-==-=-

'define TRUE 1 /* Constants for use with BOOL ./
'define FALSE 0

/*-- The following constants return pointers to variables from the ---./
/*-- BIOS variable segment at segment address Ox40 ---./

'define CRT START «unsigned far *) MK FP(Ox40, Ox4E»
.define ADDR_6845 «unsigned far .) MK=FP(Ox40, Ox63»

'define NORMAL OxO? /* Character attribute definition */
'define BRIGHT OxOf /. Based on monochrome video card·/
'define INVERSE Ox?O
'define UNDERSCORED Ox01
.define BLINKING Ox80

'define BlACK OxOO /* Color attributes for color card */
'define BLUE Ox01
'define GREEN Ox02
'define COBALTBLUE Ox03
'define RED Ox04
'define VIOLET Ox05
'define BROWN Ox06
'define LIGHTGRAY OxO?
'define DARKGRAY Ox01
'define LIGHTBLUE Ox09
.define LIGHTGREEN OxOA
'define LIGHTCOBALT OxOB
fdefine LIGHTRED OxOC
fdefine LIGHTVIOLET OxOD
'define YEr..LOW OxOE
fdefine WHITE OxOF

/*-= Global variables -~~------=--./

VP vptr; /* pointer to first character in video RAM */

, ••••••••••••••***.**.***.**••••••••••••••••••••• ***••*******••••*.*.*••
Function : 0 P R I N T

--
* Task Writes a string directly to video RAM •
• Input parameters 	 - COLUMN - Output column * • 	 - LINES - Output row •

- COLOR = Character attribute

556

Abacus 10.7 Accessing Video RAM from High Level LanglUlges

* - STRING - Pointer ~o string
Return value None *.*•••••****.*•••***••••**.*************••*****.*.**********************/

void dprint(BYTE column, BYTE lines, BYTE color, char * string)

register VP lptr; 1* Floating pointer in video RAM *1
register BYTE i; 1* Points to number of characters *1

1*-- Set pointer to output position in video RAM --------------------*1
lptr - (VP) «BYTE far *) vptr + *CRT START) + lines * 80 + column;
for (i-o ; *string ; ++1ptr, ++i) - 1* Execute string *1

(
lptr->character - * (string++); 1* Character in video RAM *1
lptr->attribute - color; 1*'Set character attribute *1

)

/****************.* ••***********************.*****.******••*•••• ***.*.**
Function : I NIT D P R I N T

----------------------------=---------------------------------------
Task Determines video RAM segment address for DPRINT

* Input parameters None *
Return value None *
Info Allocates segment address of video RAM in VPTR

* global variable
..**.*.**••••********.* ••*.*****.****••••********.*.*****.*****.*****/

void init_dprint()

vptr - (VP) MKJP((*ADDR_6845 - Ox3B4) ? OxBOOO OxB800, 0);

J

/.* * * ***.** ** *••** **** ••********.* * *••*•• *••******* ** *.* **'* *** •• ***. ** * *
Function : C L S *

--
Task Clears the screen with the help of DPRINT

*
Input parameters - COLOR - Character attribute
Return value None

******••********** •••**********************.******************••*******/

void cls(BYTE color)

static char blankline [81] = ,{ ,, ,, ,, , , , , , , , , , , , , , , ,. . ,. . , .., . . , . ,1'01I

J;

register BYTE i; 1* Loop counter *1

for (i-O; 1<24; ++i) 1* Execute each line *1
dprint(O, i, color, blankline); 1* Display blank line *1

/ •• *.**.*******.***••••*.******.*•••********••***.*********.********.*••
* Function : N 0 KEY *
**--*.

Task Tests for a keypress
* Input parameters : None
* Return value : TRUE if a key is pressed, otherwise FALSE
.••••*••*****•••**••• ***••••••***********************.*****•••***••/

557

10. Accessing and Programming the Video Cards 	 PC System Programming

BOOL nokey ()

(
tifdef TURBOC /* Compiling this with TURBO C? */
return(biosk..y(1) - 0); /* YES, read keyboard from BIOS */

'else /* Using Microsoft C */
return (bios keybrd (KEYBRD READY) -- 0); /* Read from BIOS *1

.endit - - -

}

/*****************.********•••******.*••••***.*•••••*.***••••••**•••***/
1** 	 MAIN PROGRAM **1
/ •••**************•••** ••••*.***••*********•••*.****•••••******•••***.*/

void main ()
(
BYTE 	 first col, 1* Color of first square on the screen *1

color, 1* Color of current square *1
column, /* Current output position *1
lines;

init dprint(); 1* Determine segment address of video RAM */

cIs (-COLOR (BLACK, GREEN)); 1* Clear screen *1

dprint(22, 0, WHITE, "DVIC - (c) 1988 by Michael Tischer");

firstcol - BLACK ; 1* Start with black *1

while(nokey()) 1* Repeat until the user presses a key */

{
if (++firstcol > WHITE) 1* Reached last color? *1
first co I = BWE; 1* YES, continue with blue *1

color = firstcol; 1* Set first color on the screen */

/*-- Fill screen with squares -------------------------------------*1

for (column=O; column < 80; column += 4)

for (lines-I; lines < 24; lines +- 2)

(
dprint(column, lines, color, -_");1* Block characters can */
dprint(column, lines+1, color, __");1* be created by press- *1
color = ++color & 15; 1* ing <Alt><2><1><9> */

}

The Pascal implementation

By using the keyword ABSOLUlE or by linking in a small assemblyJanguage
routine it would also be possible to treat the video RAM as a normal variable in
Turbo Pascal. But there's an easier way.

Turbo Pascal offers the arrays MEMW and MEM for accessing memory which is
outside of the data segment of the Turbo Pascal program. The array MEM consists
of bytes and the array MEMW of words. The two arrays don't actually exist and are
just mapped to the address space, but that doesn't affect their usefulness.

We can write values into the array as well as read from it. This is done with the
following statement:

MEMW[segment address offset address 1 .= expression

or

variable := MEMW[segment address offset address 1

558

Abacus 	 10.7 Accessing Video RAM from High Level Languages

The MEM array might be easier to use for this particular application since we will
be alternating between ASCII characters and a constant attribute. However, the
output procedure DPrint uses the MEMW array instead, because 16-bit accesses are
performed faster than two successive 8-bit accesses on 16-bit machines.

When accessing the MEMW array, DPrint takes the segment address of the video
RAM from the variable VSeg, which is initialized at the start of the program in
the procedure InitDPrint. As described before, this is done by examining the BIOS
variable which contains the port address of the CRTC address register. This and the
other BIOS variables are declared using the ABSOLUTE keyword, allowing them
to be used in the program like any other global variables.

The offset within the MEMW array is computed from the starting address of the
screen page. The coordinates are passed to DPrint, in which the row coordinate is
multiplied by 160 and the column coordinate by two. When running through the
string to be printed, the memory offset is incremented by two on each pass,
moving it one ASCII/attribute pair to the right.

Pascal listing: DVIP.P

(*.* ••• **********••****************••*****••••*.*.****••••••••*********)
{* DVIP 	 *)
{*--*){* Task : Demonstrates direct access to video RAM from *)
{* Turbo Pascal *)

{*--*)
{* Author : MICHAEL TISCHER *)
{* Developed on : 10/02/1987 *)
{* Last update : 06/20/1989 *)
{.****.** ••••••****•••••• ***••••••• **********•••***••••••••••**********}

program DVIP;

Uses Crt, Dos; 	 { Use CRT and DOS units)

const 	NORMAL = $07; Define character attributes in)
LIGHT = $Of; conjunction with monochrome }
INVERSE - $70; { video card }
UNDERSCORED - $01;
BLINKING = $80;

BIJ\CK - $00; { Color attributes for color card }

BLUE = $01;

GREEN - $02;

COBALTBWE = $03;

RED = $04;

VIOLET - $05;

BROWN = $06;

LIGHTGRAY = $07;

DARKGRAY - $01;

LIGHTBLUE = $09;

LIGHTGREEN - $OA;

LIGHTCOBALT - SOB;

LIGHTRED = SOC;

LIGHTVIOLET - $00;

YELLCM = $OE;

WHITE = $OF;

type TextTyp - string[80]i

var VSeg : word; 	 { Segment address of video RAM }

559

10. Accessing and Programming the Video Cards 	 PC System Programming

i·**··*******···***····**··**···***········**·········.....***.*.*•••**}
{* InitDPrint: Determines segment address of video RAM for DPrint *1
{* Input : none *1
{* Output : none *1
{*•••****.**•••**.****.**•••••*****•••••*****••••••***•• ***.** •••••••**}

procedure InitDPrint;

var CRTC_PORT : word absolute S0040:0063; {Variable in BIOS var.seg. 1

begin
if CRTC PORT - S3B4 then { Monochrome card connected?

VSeg :- S8000 { YES, video RAM at 8000:0000
else { NO, must be a color card

vSeg :- SB800; { video RAM at 8800:0000
end;

{******************•••*** ••*****.*****••***.*.******•• ********** ••*****}
{* DPrint: Writes a string direct into video RAM *1
{* Input COLUMN: Output column *1
{* - LINES : Output line * 1
{* - COLOR: Color (attribute) for individual characters *1
{* - STROUT: String to be displayed *)
{* Output none * 1
{*••*** ••••••••******••••••******••••*****.**.**••••••*****••• ** •••****}

procedure DPrint(Column, Lines, Color: byte; StrOut: TextTyp);

var 	PAGE ors word absolute S0040:S004E; {Variable in BIOS var.seg.
Offset word; { Pointer to current output position
i, j byte; (Loop counter
Attribute : word; (Attribute for output

begin
Offset :- Lines * 160 + Column * 2 + PAGE ors;
Attribute :- Color shl 8; (High byte for word access to video RAM
i :- length { StrOut); { Determine string length
for j :-1 to i do I Execute string

begin { Put character & attribute directly into video RAM
memw[VSeg:Offsetl :- Attribute or ord(StrOut[j]);
Offset :- Offset + 2; {Set offset to next ASCII/attribute pair

end;
end;

{**.*.********.*•••****.*••••*.*****.***•••*****.****.***••*****••*****}
[* Demo: Demonstrates application of DPrint *1
[* Input : none *1
{* Output : none *1
{*.****•••••••••••****•• ** ••• }

procedure demo;

var Column, 	 { Current output position 1
Lines,
Color integer;

begin
TextBackGround (BLACK); { Turn background black
ClrScr; [Clear screen
DPrint(22, 0, WHITE, 'DVIP - (c) 1988 by Michael Tischer');
Randomize; [Enable random number generator
while not KeyPressed do { Repeat until user presses a key

begin
Column :- Random(76); Select column, row and
Lines :~ Random(22) + 1; color at random
Color :- Random(14) + 1;
DPrint(Column, Lines, Color, '[[[[');(Block character can be

560

AbaclLf 10.7 Accessing Video RAM from Higla Level Languages

DPrint(Column, Lines+1, Color, '[[[[');! created by pressing
end; (<Alt><2><1><9>

ClrScr; (Clear screen
end;

{****••** •••*******••******.********.*************.***._.***-*._••••••• }
{ ** MAIN PROGRAM ** I{...._.•...•....._._._._.......__....._...._-_._-_._.---_.-._._.._..._.}

beqin
InitDPrint; Initialize output using DPrint
Demo; { Demonstrate DPrint

end.

The BASIC implementation

This version doesn't really fulfill its goal, since it is slower than the already slow
PRINT command. But we have included it for the sake of completeness, and
because it is a good example of how you can access the entire address space of the
8088 from within BASIC,

The commands DEF SEG, PEEK, and POKE are the heart of memory access in
BASIC. DEF SEG sets the segment address of the "current" 64K segment. PEEK
and POKE can then be used to read and write bytes from or to this segment. This
technique is used in the initialization routine at line number 50000, which flrst
dermes the BIOS variable segment as the current segment From there two PEEK
commands read the port address of the CRTC address register and the variable VR
is loaded with the segment address of the video RAM.

This address is used in the output routine at line number 51000 in combination
with the DEF SEG command, which defines the video RAM as the current
segment But flrst we calculate the offset address in the video RAM by reading the
start address of the current screen page from the BIOS variable area and then adding
the offset address of the output position within the video RAM. As in the Pascal
version, this is calculated by adding the product of the row coordinate (variable
CLINE%) by 160 and the column coordinate (COLUMN%) by 2.

BASIC listing: DVIB.B

100 ,._._--_._*---_._..._-*-._-_._-*************.********************•• '
110 D V I B
120 ,*--*,
130 Task : Demonstrates direct access to video RAM
150 '. Author : MICHAEL TISCHER
160 ,. Developed on : 10/01/1988
170 0. last update : 06/21/1989 .'
180 ,**'
190
200 CLS : KEY OFF
210 GOSUB 50000 'Determine seqrnent address of video RAM
220 COLUMN'-22 : CLINE'-O : COL' - 15
230 T$ = "DIVB - (c) 1988 by MICHAEL TISCHER" : GOSUB 51000
240 FCOL% = 0 : T$ = "[[[[" 'Define string and starting color
250 A$ = INKEY$: IF A$<>.... THEN 400 'Repeat until user presses a key
260 FCOL' = FCOL' + 1 'Increment starting color
270 IF FCOU > 15 THEN FCOU = 1 'When FCOL\=16 make FCOL%-l
280 COL% = FCOU 'Set color for first square
290 FOR COLUMN'=O TO 76 STEP 4 'Execute for each column
300 FOR Z%=l TO 24 STEP 2 'Execute for each line

561

10. Accessing and Programming the Video Cards PC System Programming

310 CLlNEt - U: GOSUB 51000 'Display first line of square
320 CLINEt - Zt+1 GOSUB 51000 'Display second line
330 COLt - COLt + 1 AND 15 'Set next color
340 NEXT
350 NEXT
360 GOTO 250
370 '
400 CLS 'Clear screen
410 END
460 '
50000 1*_••••••_••••__ •••••• _--•••• __ ••••••••_--••••• _-_ ••••***********.
50010 '* Determine segment address of video RAM *'
50020 ,*--"
50030 '* Input : none "
50040 " Output: VR is the segment address of video RAM
50050 .•••••••_••••••••••••••••••_••••••••••••••••••••••••••*.-......_.'
50060 '
50070 DEF SEC - GH40 'Segment address of BIOS variable range
50080 VR - PEEK(&H63) + PEEK(&H64) * 256 'Get CRTC port
50090 IF VR - GH3B4 THEN VR = 'HBOOO ELSE VR - &HB800
50100 RETURN 'Back to caller
50120 '
51000 ••••••••••••••••••••••_••••_-_••••••••••••••••••••••••***._.__._.'
51010 " Write string direct into video RAM "

51020 "--"
51030 ,* Input - COLUMNt - the output column
51040 - CLlNEt - the output line *,
51050 - COLt - string color
51060 - TS - the string to be displayed
51070 Output: none
51080 1***.**••••••* ••••••••••••••••••••••••***** •••*••••••••••••••••••.
51090 '
51100 DEF SEC - GH40 'Segment address of BIOS variable range
51110 OFt = PEEK(&H4E) + PEEK(&H4F) , 256 'Starting address of page
51120 OFt = OFt + COLUMN' * 2 + CLlNEt * 160 'Offset of first character
51130 DEF SEC - VR 'Set segment address of video RAM
51140 FOR It-1 TO LEN(TS) 'Execute string
51150 POKE OF', ASC(MIDS(TS,n,1)) 'ASCII code in video RAM
51160 POKE OFt+1, COLt 'Color in video RAM
51170 OFt = OFt + 2 'Set offset to next character
51180 NEXT
51190 RETURN 'Back to caller
51200 '

562

