Chapter 10

Accessing and Programming
the Video Cards

Direct

This chapter explains methods of programming the most popular video cards on
the PC market. Even though the video cards mentioned here differ in their
capabilities, they are all based on the same basic principle. High level languages
such as BASIC, Pascal or C often have their own specific keywords and commands
for controlling screen display. However, many of these commands merely call
BIOS or DOS functions, which are both slow and inflexible in execution.

access

Direct access to the video card is the alternative. Applications from Lotus 1-2-3®
to dBASE® use direct video access coding, to guarantee both speed and that
element of extra control over the video display. The main disadvantage:
Programming in assembly language is required, since the communication here
occurs at the system level. This chapter examines the programming needed for the
best known video cards on the market:

. Monochrome Display Adapter (MDA), also called a monochrome card
. - Color Graphics Adapter (CGA), also called a color card

. Hercules Graphic Card (HGC)

. Enhanced Graphic Adapter (EGA)

. Video Graphics Array (VGA)

Most of the graphic cards on the market are compatible with one of the cards
mentioned in this chapter, and the descriptions stated here should apply to those
cards.

457

10. Accessing and Programming the Video Cards PC System Programming

Video Graphics Array (VGA)

What's

Speed

This also applies to the newest generation of video cards, the VGA card. Designed
in conjunction with the IBM PS/2 system, the VGA card is now available to the
general public as an add-on card. This chapter demonstrates some general features
of the EGA and VGA, as well as a few programming techniques.

needed

Before a video card can display a character or graphic pixel on a monitor screen or
CRT (cathode ray tube), the card must know the following:

. which character or graphic pixel to display
. The color of the character or pixel
. The location on the screen at which it should be displayed.

PC video cards include RAM which collects information about every CRT screen
pixel or screen location. This RAM memory is called video RAM and interfaces
with the PC's RAM, allowing direct access from the microprocessor.

Rapid screen changes are important in word processing programs and other PC
applications. For example, if you are paging through a word processing document
at high speed, a 25-line, 80-column screen requires the transmission of 2,000
characters through the video card at one time. Fast data transfer is even more
important for high-resolution graphics. For example, the 200x640-pixel IBM
Color Graphics Adapter transmits 128,000 pixels of graphic information at a time.

Display modes

Each type of video card can have more than one display mode. Text and graphics
display may be very different from one another. The monitor cannot distinguish
between the two modes; it just processes the graphic information sent by the video
card (or video controller). For the programmer and the video card, the modes require
completely different programming techniques.

Graphic mode and text mode

458

Graphic mode stores the color of a screen pixel in one or more bits, then transmits
the contents of video RAM more or less directly to the screen. Text mode uses a
different method. The ASCII code of a character is stored in video RAM for each
screen location. When the video controller displays the screen, it obtains the
character pattern of the ASCII code from the ROM chip on the video card, then
converts the code into a character matrix of pixels. This pattern then passes to the
monitor and appears on the screen.

Abacus 10. Accessing and Programming the Video Cards

PC text mode uses the 256-character extended character set (see Appendix I). Since
these characters are numbered sequentially from O to 255, one byte is enough for
each screen position to display the character at the proper position.

Attribute bytes

Every screen position has an attribute byte which indicates the color or display
attribute of the character (underlined, blinking, inverse video, etc.). This means
that two bytes are needed for each position on the screen. Therefore, a total of 4000
bytes are required for a 25-line, 80-column screen. This appears to be a lot of
memory at first glance, but is fairly small when compared to the memory
requirements for bit-mapped graphic screen. In graphic mode, each dot is
represented by one or more bits. A resolution of 640x200 pixels requires 128,000
bits (16K).

Another advantage of text mode is the simplicity in exchanging one character for
another on the screen. The bit-map mode has its own advantages. Besides graphic
displays, text can be displayed as individual dots whose pattern is derived from a
character table in RAM installed by the user. This means that the user can design
his own fonts (character sets).

459

10. Accessing and Programming the Video Cards PC System Programming

10.1 Anatomy of a Video Card

The figure below shows the individual hardware components of a video card. The
starting point for creating the picture is always the video RAM. This video RAM
contains information about the characters to be displayed, and their display
attributes (color, style, etc.).

Getting to the screen

The character generator first accesses video RAM, reading the characters one by
one, and uses a character pattern table to construct the bit-map that will later form
the character on the screen. The attribute controller also gets information about the
display attributes (color, underlining, reverse, etc.) of the character from the video
RAM. Both modules prepare this information and send it to the signal controller,
which converts it to appropriate signals to be sent to the monitor. The signal
controller itself is controlled by the CRT controller, which is the central point of
video card operations. Besides the monitor and the video RAM, this CRT
controller is one of the most important components of a video system. We will
examine all these components in greater detail.

’

’

CRT » Signal ’
controller controller '.

[
'
'
'
' '
! '
' ; / ’ ’ »
'
[]

: '
' Character Character Attribute :
: pattern nd generator controller | 1
, I
' ! v
' ’
' ’
' ’
' VIDEO RAM '
' I
' ’
b v v v v o wrwrwrwr - a—r—r---—a—-

Block diagram of a video card

The monitor

460

The monitor is the device on which the video data is displayed. Unlike the video
card, the monitor is a "dumb" device. This means it has no memory and cannot be
programmed. All monitors used with PCs are raster-scan devices, in which the
picture is made up of many small dots arranged in a rectangular pattern or raster.

When forming the picture, the electron beam of the picture tube touches each
individual dot and illuminates it if it is supposed to be visible on the screen. This

Abacus 10.1 Anatomy of a Video Card
is done by switching on the electron beam as it passes over this dot, causing a
_ phosphor particle on the picture tube to light up.
Color monitors

While monochrome monitors need only one electron beam to create a picture,
color monitors use three beams which scan the screen simultaneously. Here a
screen pixel consists of three phosphor particles in the basic colors of light: red,
green, and blue. Each color has a matching electron beam. Any color in the
spectrum can be created by combining these three colors and varying their
intensities.

But since an ionized phosphor particle emits light for only a very brief period of
time, the entire screen must be scanned many times per second to create the
illusion of a stationary picture. PC monitors perform this task between 50 and 70
times per second. This repeated re-scanning is called the refresh rate. One rule of
thumb for this rate: The faster the refresh rate, the better quality the picture.

Each new screen image begins in the upper left comer of the screen. From there
the electron beam moves to the right along the first raster line. When it reaches the
end of this line, the electron beam moves back to the start of the next line down,
similar to pressing the <Return> key on a typewriter. The electron beam then
scans the second raster line, at the end of which it moves to the start of the next
raster line, and so on. Once it reaches the bottom of the screen, the electron beam
returns to the upper left corner of the screen and the process starts over again. The
illustration below shows the path of the electron beam.

Remember that the movement of the electron beam is controlled by the video card,
not by the monitor itself.

Picture tube

Vertical

Electron Beam

i

Horizontal

H OFF: o
ON: —» »

Electron beam scan movement

461

10. Accessing and Programming the Video Cards PC System Programming

The resolution of the monitor naturally controls the number of raster lines and
columns which the electron beam scans when creating a display. Thus, a monitor
which has only 200 raster lines of 640 raster columns each clearly cannot handle
the high resolutions of an EGA card at 640x350 pixels. The four monitor types
used with a PC generally have the following resolutions:

Resolutions of different monitors
Monitor Vertical Horizontal
Monochrome 350 720
Color 200 640
EGA 350 640
Multisync varies, up to 600 | varies, up to 800

The CRT controller

The CRT Controller or CRTC is the heart of a video card. It controls the operation
of the video card and generates the signals the monitor needs to create the picture.
Its tasks also include controlling light pens, generating the cursor and controlling
the video RAM.

To inform the monitor of the next raster line, the CRTC sends a display enable
signal at the start of each line, which activates the electron beam. While the beam
moves from left to right over each raster column of the line, the CRTC controls
the individual signals for the electron beam(s) so that the pixels appear on the
screen as desired. At the end of the line, the CRTC disables the display enable
signal so that the electron beam's return to the next raster line doesn't make a
visible line on the screen. The electron beam is directed to the left edge of the
following raster line by the output of a horizontal synchronization signal. The
display enable signal is again enabled at the start of the next raster line, and the
generation of the next line begins.

Overscan

462

Since the time that the electron beam needs to return to the start of the next line is
less than the time the CRTC needs to get and prepare new information from the
video RAM, there is a short pause. But the electron beam cannot be stopped, so
we get something called overscan, which is visible as the left and right borders of
the actual screen contents. Although this is an undesirable side effect in one sense,
it is useful because it prevents the edges of the screen contents from being hidden
by the edge of the monitor. If the electron beam is enabled while it is traveling
over this border, a color screen border can be created.

Abacus

10.1 Anatomy of a Video Card

-4

d

horizontal
overscan

A

Screen contents : caster lines

t vertical overscan [\
—t

\
screen border

A

:— # X raster columns
Rasters and overscan on a screen

Once the electron beam reaches the end of the last raster line, the display enable
signal is disabled, and a vertical synchronization signal is sent. The electron beam
returns to the upper left comer of the screen. Again the display enable signal is re-
enabled and scanning again begins.

Pause and overscan

Signal

As with the horizontal electron beam return, a pause results which is displayed in
the form of overscan, creating a vertical screen border.

timing

The timing of individual signals varies from video mode to video mode. For this
reason, the CRTC has a number of registers which describe the signal outputs and
their timing. The structure of these registers and how they are programmed will be
discussed in the remainder of this section. Many of these registers come from the
registers of the 6845 video controller from Motorola. This controller is used in the
MDA, CGA, and Hercules graphics cards. The EGA and VGA cards use a special
VLSI (very large scale integration) chip as a CRTC, and its registers are somewhat
more complicated. The techniques described here are intended as general
descriptions for all video cards.

463

10. Accessing and Programming the Video Cards PC System Programming

464

Registers of the 6845 video controller from Motorola

Reg. Meaning Access
00H Total horizontal character Write
01H Display horizontal character Write
02H Horizontal synchronization signal after ...char Write
03H Duration of horizontal synchronization signal in char. |Write
04H Total vertical character Write
05H Adjust vertical character Write
06H Display vertical character Write
07H Vertical synchronization signal after ...char Write
08H Interlace mode Write
09H Number of scan lines per screen line Write
0AH Starting line of screen cursor Write
OBH Ending line of screen cursor Write

These registers, like all of the other registers on the video card, are accessed via /O
ports with the assembly language instructions IN and OUT. The registers of the
CRTC are accessed through a special address register, rather than directly from the
address space of the processor. The number of the desired CRTC register is written
to the port corresponding to this address register. Then the contents of this register
can be read into a special data register with the IN assembly language instruction.
If a value is to be written to the addressed register, it must be transferred to the data
register with the OUT instruction. Then the CRTC automatically places it in the
desired register. These two registers are actually found at successive port addresses,
but these addresses vary from video card to video card.

We will include tables throughout the chapter to describe the contents of individual
CRTC registers under the various video modes. Here's an example which shows
how the contents of these registers are calculated and how the individual registers
are related to each other. If you try some of these calculations with your calculator
or PC, you will notice that some of them do not work out evenly. But since the
registers of the CRTC hold only integer values, they will be rounded up or down.

The basis for the various calculations are the bandwidth and the horizontal and
vertical scan rates of a monitor.

Bandwidth and scan rates of different video cards

Video system Resolution Bandwidth Vert. scan rate Horiz. scan

rate

MDA 720 x 350 16.257 MHz 50 Hz * | 18.43 KHz*

CGA 640 x 200 14.318 MHz 60 Hz 15.75 KHz

HGC 640 x 200 14.318 MHz 50 Hz 18.43 KHz

EGA 640 x 350 16.257 MHz 60 Hz 21.85 KHz
640 x 200 14,318 MHz 60 Hz 15.75 KHz
720 x 350 16.257 MHz 50 Hz 18.43 KHz

(*MHz=Megahertz, KHz=Kilohertz, Hz=Hertz

The bandwidths in the figure above specify the number of points which the
electron beam scans per second, and is therefore also called the point or dot rate.
The vertical scan rate specifies the number of screen refreshes per second, while the
horizontal scan rate refers to the number of raster lines which the electron beam
scans per second.

Abacus

10.1 Anatomy of a Video Card

Starting with these values, let's practice calculating the individual CRTC register
values for the 80x25 character text mode on a CGA card.

Dividing the bandwidth by the horizontal scan rate we get the number of pixels
(screen dots) per raster line.

Bandwidth 14.318 MHz
+ Horizontal scan rate 15.570 KHz
Pixels per line 919

Since the CRTC registers generally refer to the number of characters rather than
pixels, this value must be converted to the number of characters per line. This is
done by dividing the number of pixels per line by the width of the character
matrix. On the CGA card this is eight pixels.

Pixels per line 919
+ Pixels per character 8
Characters per line 114

This value, decremented by one, is placed in the first register of the CRTC and
specifies the total number of characters per line. In the second register we load the
number of characters that will actually be displayed per line. The 80x25 character
text mode usually offers 80 characters.

The difference between the total and the number of characters actually displayed per
line is the number of characters which can be displayed between the horizontal
return and the overscan. The difference in this case is 34 characters.

The duration of the horizontal beam return must be entered in the fourth register of
the CRTC. This register stores the number of characters which could be displayed
during this time, rather than the actual time duration. The monitor specifications
define this instead of the video card itself. As a rule this number is between 5% and
15% of the total number of characters per line. A color monitor uses exactly ten
characters.

This leaves 24 characters for the overscan (the horizontal screen border). The third
CRTC register specifies how these characters are divided between the left and right
screen borders. This register specifies the number of character positions which will
be scanned before the horizontal beam return occurs. The BIOS specifies the value
90 here, or after ten characters have been displayed for the screen borders. The
remaining 14 characters are placed at the start of the next line and form the left
screen border.

The calculations for the vertical data, the number of vertical lines, the position of

the vertical synchronization signal, etc., follow a similar scheme. The first
calculation is the number of raster lines per screen. This results from the division

465

10. Accessing and Programming the Video Cards PC System Programming

of the number of lines displayed per second by the number of screen refreshes per
second:

Pixels per line 919
+ Pixels per character 8
Characters per line 114
Horizontal scan rate 15.750 KHz
+ Screen refreshes 60 Hz
Raster lines 262

Since the characters in CGA text mode are eight pixels high by eight pixels wide,
we again divide by eight to get the number of text lines per screen:

Raster lines 262
+ Pixels per character 8
Lines per screen 32

This result must be decremented by one and then loaded into the fifth register of
the CRTC. The number of displayed lines is loaded into the seventh register. Since
seven fewer lines are displayed than are actually available, these extra lines are used
for the vertical beam return and overscan, whereby the vertical beam return begins
after the 28th line.

The character height must be decremented by one and loaded into CRTC register
nine. The decrement results is 7 in this example. This value also determines the
range for the values loaded into register ten and eleven. They specify the first and
last raster lines of the screen cursor. The cursor position is determined by the
contents of registers 14 and 15. They refer to the distance of the character from the
upper left corner of the screen, instead of line and column. This value is calculated
by multiplying the cursor line by the number of columns per line and then adding
the cursor column. The high byte of the result must be loaded into register 14 and
the low byte in register 15.

The video RAM area

466

The contents of registers 12 and 13 determine the area of video RAM displayed on
the screen. To understand these registers, we first need to know something about
the way video RAM is organized.

The third component of the video system determines what will eventually be
displayed on the screen. In text mode, the video RAM contains the ASCII codes of
the characters to be displayed and their attributes. While the organization of video
RAM in this mode is identical for all of the video cards discussed here, the
organization for graphic mode varies from card to card. The description of each card
discusses the way video RAM organizes graphic modes (more on this later).

Abacus

10.1 Anatomy of a Video Card

As the illustration below shows, each screen position occupies two bytes in video
RAM. The ASCII code of the character to be displayed is placed in the first of
these two bytes, the one with the even address. By using eight bits per character
code, a maximum of 256 different characters can be displayed.

25 Characters 80 Columns

c3

(o i I
AT R
TR R R
HER [1

HENER I
TR
T T

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

R

1513 11 9876543210

Attribute ASCII-
Code

Normal text mode structure in video RAM

After the ASCII code, and always at an odd offset address, follows the attribute
byte, which defines the appearance of the character on the screen. The attribute
controller divides it into two nibbles, whereby the upper nibble (bits four to seven)
describes the character background, and the lower nibble (bits zero to three)
describes the character foreground. This results in two values between zero and
fifteen which are interpreted depending on the type of monitor attached. With a
color monitor (and a CGA or EGA card) both values select one of 16 possible
colors. Each character on the screen can thus have its own foreground and
background colors.

A monochrome monitor cannot display colors, regardless of the adapter. Here the

attribute controls whether the character is displayed at high or low intensity,
inverse, or underlined.

467

10. Accessing and Programming the Video Cards PC System Programming

Character organization in video RAM

To access video RAM, you must know how the individual characters are organized
within this memory. This organization is similar to character display on the
screen.

The first character on the screen (the character in the upper left comer) is also the
first character in video RAM, located at offset position 0000H. The next character
to the right is located at offset position 0002H. All 80 characters of the first screen
line follow in this manner. Since each screen character takes two bytes of memory,
each line occupies 160 bytes of RAM. The first character of the second screen line
follows the last character of the first line, and so on.

Finding character locations in video RAM

468

You can easily find the starting address of a line within vidleo RAM by
multiplying the line number (starting with zero) by 160. To get from the
beginning of the line to a character within the line, the distance of the character
from the start of the line must be added to this value. Since each character takes
two bytes, this is done simply by multiplying the column number (also starting at
zero) by two. Adding both products together yields the offset position of the
character in the video RAM. These calculations can be combined into a single
formula:

Offset_position(row, column) = row * 160 + column * 2

Note: Since only 40 characters per line are displayed in 40-column video
modes, the factor 80 must replace the original 160.

The RAM memory of the video card is integrated into the normal RAM of the PC
system, so you can use normal memory access commands to access video RAM.
You must know the segment address of video RAM, which is used together with
the formula above to find the offset position. Section 10.7 shows how this can be
done easily in assembly language, BASIC, Pascal, and C.

Now that we have discussed the most important similarities between the four video
cards, the following four sections describe the capabilities of these cards. In
addition, these sections explain how these capabilities can be used for optimal
screen output.

Abacus 10.2 The IBM Monochrome Card

10.2 The IBM Monochrome Card

The IBM Monochrome Display Adapter, or MDA, is probably the oldest of the
video cards. This card is based on the Motorola 6845 video controller, which is an
intelligent peripheral chip. The 6845 controller constructs a display by generating
the proper signals for the monitor from video RAM.

This card is excellent for text display. This is achieved with a 9x14 character
matrix, which permits high-resolution character display. The format of this matrix
is unusual since a character generator containing the bit pattern of each character
can only produce characters 8 pixels wide. Characters from the IBM character set
may not connect with each other (e.g., using box characters to draw a box). A
circuit on the graphics card sidesteps this disadvantage by copying the eighth pixel
of the line into the ninth pixel for any characters whose ASCII codes are between
BOH and DFH. This allows the horizontal box drawing characters to connect.

Column 01 2 34 5 6 '7_1
Row 0 -
1
) -
3 -
) -
; m
6
7
e -
9
10 :
11
12 —
13 |

v
Coding stored in ROM character set

Monochrome display adapter—9x14 character matrix

The character generator requires one byte for each screen line: one bit per pixel,
eight bits per line. Each character requires 14 bytes. The complete character set has
a memory requirement of almost 4K, stored in a ROM chip on the card. For some
reason the card has an 8K ROM, leaving the second bank of 4K unused.

Video RAM on the MDA
The video RAM of the card starts at address B000:0000 and extends over 4K (4,096
bytes). Since the screen display only has space for 2,000 characters and requires

469

10. Accessing and Programming the Video Cards PC System Programming

470

only 4,000 bytes of memory for those characters, the unused 96 bytes at the end of
video RAM are available for other applications.

The following figure shows the meanings of the different values representing the
attribute byte:

7 6 5 4 3 2 1 0 Dbit

Character color

Character intensity
O=normal

1=high intensity
Background color
Blinking (or background
0=off intensity)
1=0Nn

Attribute byte values—IBM monochrome display adapter

Any combination of bits can be loaded into this byte. However, the MDA only
accepts the following combinations:

2 1]0]Jo0jJo|2J0] 0] 0] No character (black on black)

210 0J0]2])0] O] 1| underlined character (white on black)

White character on black

?2 |1]11]1|2)0 | 0] 0] Black character on white (inverse)

No character (white on white)

Byte combinations—IBM monochrome display adapter

Besides these bit combinations, bits 3 and 7 of the attribute byte can be set or
unset. Bit 3 defines the intensity of the foreground display. When this bit is set,
the characters appear in higher intensity. Bit 7's purpose varies with the contents
of the control registers (more on this later). For now, all you need to know is that

Abacus

10.2 The IBM Monochrome Card

bit 7 can either enable blinking characters, or enable an intensity matching the
background color.

Monochrome cards have two more registers available: the control register and the
status register.

Always 1

0=Screen off
1=Screen on

Bit 7 of the attribute
byte:

0=bright background
1=blinking

Control register

MDA control register

The control register located at port 3B8H controls the monochrome display
adapter's different functions. As the figure below shows, only bits 0, 3 and 5 are of
importance. Bit O controls the resolution on the card. Although the card only
supports one resolution (80x25 characters), this bit must be set to 1 during system
initialization. Otherwise the computer goes into an infinite wait loop. Bit 3
controls the creation of a visible display on the monitor. If bit 3 is set to 0, the
screen is black and the blinking cursor disappears. If bit 3 is set to 1, the display
returns to the screen. Bit 5 has a similar function: If bit 7 in the attribute byte of
the character is set to 1, it enables blinking characters. If bit 7 contains the value
0, the character appears, unblinking, in front of a light background color. This
means that bit 7 of the attribute byte acts as an intensity bit for the background.
This register can only be written. This makes it impossible for a program to
determine whether the display is turned on or off. The normal value for this
register is 29H, meaning that all three relevant bits default to 1.

471

10. Accessing and Programming the Video Cards PC System Programming

I—Hcrlzontal
synchronization
signal: O=off, 1=on
0=Current pixel off
1=Current pixel on

Status registers (3BAH)

MDA status register

Only bits 0 and 3 are used in the status register; all the other bits must contain the
value 1. Unlike the control register, programs can read this register, but register
contents cannot be changed by program code.

Horizontal synchronization

Bit 0 indicates if a horizontal synchronization signal is being sent to the display
screen. The video card sends this signal after creating a screen line (not to be
confused with a text line, which consists of 14 screen lines) on the screen. This
signal informs the electron gun, which "draws” the picture on the screen, that it
should return to the left border of the current screen line. In this case the bit has
the value 1. Bit 3 contains the value of the pixel where the electron beam is
currently located. A 1 signals that the pixel is visible on the screen and 0 means
that the screen remains black at this location.

MDA internal registers

472

Besides the two registers directly connected to the hardware of the monochrome
display adapter, the 6845 video processor contains a series of internal registers.
These 18 registers are open to user access through the 6845 index register and data
register. The index register is connected to port address 3B4H, the data register at
port address 3BSH. You can only write to the 6845 registers—you cannot read data
from them.

When you enter a value into one of the 18 registers, the number of the register (0-
17) passes first into the index register. Then the value which is transmitted to the
register passes into the data register. The 6845 then transmits the indicated value to
the proper register. Most of these 18 registers should not be modified, since they
contain impofiant data about the screen structure (e.g., synchronization signals)
and incorrect values in these registers can damage the monitor. The following table
shows the meanings of the individual registers and the values which ensure a
correct display.

Abacus 10.2 The IBM Monochrome Card

Registers of the CRTC register in 80x25 text mode
on the Monochrome Display Adapter (MDA)
Reg. Meaning Content
00H Total horizontal character 9
01H Display horizontal character 0
02H Horizontal synchronization signal after ...char [:2]
03H Duration of horizontal synchronization signal in char. 15
04H Total vertical character S
05H Adjust vertical character 6
06H Display vertical character >
07H Vertical synchronization signal after ...char P
08H Interlace mode 2
09H Number of scan lines per screen line 13
0AH Starting line of blinking screen cursor 11
OBH Ending line of blinking screen cursor 12
OCH Starting address of displayed screen page (low byte) 0
ODH Starting address of displayed screen page (high byte) 0
OEH Character address of blinking screen cursor (high byte) |0
OFH Character address of blinking screen cursor (low byte) 0
10H Light pen position (high byte) x
11H Light pen position (low byte) *
*not available on MDA

The following program makes full use of the monochrome display adapter's
capabilities. It was written in assembly language. The individual routines are fully
documented and require no additional explanation. The demonstration program built
into the listing shows practical application of the individual routines.

Assembler listing: VMONO.ASM

-tt**tﬁt**t***'****'*'*ttt**t**'*ﬁt'*'*'*'*Q*****tﬁ***t*'**t**'*'**t*t;

’

i* VMONO *;
X} *e
’ ’
A Task : makes some elementary functions available for *;
Fd access to the monochrome display screen *p
-, *e
’ ’
Hd Info ¢ all functions subdivide the screen ;
Hd into columns 0 to 79 and lines 0 to 24 *
ok *e
’ ’
i* Author : MICHAEL TISCHER *;
* Developed on : 8/11/87 *;
i * Last Update : 6/14/89 *;
.k]
; H
P assembly : MASM VMONO; *;
* LINK VMONO; *;
i* *;
A call : VMONO *;
;*'**'*i***tﬁ****tﬁ***ﬁt'****ﬁ'*'*'***'*t***"*******tt'*'***'*'**t**t-

’

;== Constants

CONTROL_REG = 03B8h ;Control register port address
ADDRESS_6845 = 04B4h ;6845 address register

DATA_6845 = 03B5h ;6845 data register

VIO_SEG = O0BOOOh ;Segment address of video RAM
CUR_START = 10 ;Register # CRTC: Starting cursor line
CUR_END =11 ;Register # CRTC: Ending cursor line
CURPOS_HI = 14 ;Register # CRTC: Cursor pos. hi byte
CURPOS_LO = 15 ;Register # CRTC: Cursor pos. lo byte
DELAY = 20000 ;Counter for delay loop

473

10. Accessing and Programming the Video Cards PC System Programming
;== Stack
stack segment para stack ;Definition of stack segment
dw 256 dup (?) 7256-word stack
stack ends ;End of stack segment
;== Data
data segment para °'DATA' ;Define data segment

474

;== the Data for the Demo-Program

strl db “a* ,0
str2 db " >PC SYSTEM PROGRAMMING< *,0
str3 db * window 1 -0
str4 db * window 2 *,0
str5 db " the program is stopped by *
db * pressing a Key.... "0
initm db 13,10,"VMONO {(c) 1987 by Michael Tischer",13,10,13,10
db "This demonstration program only runs with *
db * a monochrome®,13,10,*display card. If your PC *
db "has another type of display card,",13,10
db “please enter <s> to stop the "
db * program.*,13,10,%Otherwise press any *
db "key to start *,13,10
db “the program ...",13,10,"$"
;== Data
linen dw 0*160,1*160,2*160 ;Start addresses of the lines as
dw 3*160,4*160,5*160 ;offset addresses in the video RAM
dw 6*160,7*160,8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160
dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160, 24*160
data ends ;End of data segment
;== Code
code segment para 'CODE' ;Definition of the CODE segment
assume cs:code, ds:data, es:data, ss:stack

;== this 1s the Demo-Program

demo

ende:

pro.

mov
mov

c far
ax,data ;Get segment address of data segment
ds,ax sand load into DS
es,ax ;as well as ES
Display initial msg./wait for input ————-————eee———o
ah,9 ;String output function
dx,offset initm ;Address of initial message
21h ;Call DOS interrupt 21H
ah, ah ;Get function number for key
16h ;Call BIOS keyboard interrupt
al,"s" ;was <s> entered?
ende ;YES --> end program
al,“s* ;was <S> entered?
startdemo sNO --> start demo
ax, 4cO0h ;Function number for program end
21h ;Call DOS interrupt 21H

Abacus 10.2 The IBM Monochrome Card

startdemo label near

mov cx,0d00h sEnable full cursor
call cdef
call cls ;Clear screen
;—— Fill screen with ASCII characters =—--—-——-—-——----
xor di,di ;Start in upper left corner
mov si,offset strl ;Offset address of stringl
mov cx, 2000 ;2,000 characters fit on the screen
mov al,07h ;white letters on black background
demol: call print ;Display string
inc strl ;Increment character in test string
jne demo2 sNUL code suppressed
inc strl
demo2: loop demol ;Repeat output
;-— Create window 1 and window 2 —-—=-——=--
mov bx,0508h ;Upper left corner of window 1
mov dx,1316h ;Lower right corner of window 1
mov ah,07h ;White letters, black background
call clear ;Clear window 1
mov bx,3C02h ;Upper left corner of window 2
mov dx,4A10h ;Lower right corner window 2
call clear ;Clear window 2
mov bx,0508h ;Upper left corner of window 1
call calo ;Convert to offset address
mov si,offset str3 ;0ffset address string 3
mov ah,70h ;sBlack characters, white background
call print ;Display string 3
mov bx,3C02h ;Upper left corner of window 2
call calo ;Convert to offset address
mov si,offset str4 ;Offset address string 4
call print ;Display string 4
xor di,di ;Upper left display corner
mov si,offset strS ;Offset address string 5
call print ;Display string S

;-- Display program logo

mov bx, 1EOCh ;Column 30, line 12

call calo ;Convert offset address
mov si,offset str2 ;Offset address string 2
mov ah, OFOh ;Inverse blinking

call print ;Display string 2

7—- Fill window with arrows

xor ch,ch ;Hi-byte of the counter to 0
arrow: mov bl,1 ;Asterisk
arrow0: push bx ;Push BX on the stack
mov di,offset str3 ;Draw arrow line in string 3
mov ¢l,15 ;Total of 15 characters in a line
sub cl,bl sCalculate number of spaces
shr «¢cl,1 ;sDivide by 2 (for left half)
or cl,cl ;No blanks ?
je arrowl ;YES —-> ARROW1
mov al," ™
rep stosb ;Draw blanks in string 3
arrowl: mov cl,bl ;Number of asterisks in counter
mov al,%*%
rep stosb ;Draw stars in string 3
mov «cl,15 ;Total of 15 characters in a line
sub cl,bl ;Calculate number of blanks
shr cl,1 ;Divide by 2 (for right half)
or cl,cl ;No blanks?
je arrow2 ;YES --> ARROW2

mov al,% *

475

10. Accessing and Programming the Video Cards PC System Programming

476

rep stosb ;Draw blanks in string 3
arrow2: mov bx,050%h sbelow the first line of window 1
call calo ;Convert to offset address
mov si,offset str3 ;O0ffset address string 3
mov ah,07h ;White characters, black background
call print ;Display string 3
mov bx,3C10h 7into the lowest line of window 2
call calo ;Convert offset address
call print ;Display string 3
;—- Brief pause
mov cx,DELAY ;Loop counter
waitlp: loop waitlp ;Count loop to 0

7

Scroll window 1 line down

mov bx,050%h ;Upper left corner of window 1
mov dx,1316h ;Lower right corner window 1
mov cl,l ;Scroll down

call scrolldn ;one line

;-

Scroll window 2 one line up

mov bx,3C03h ;Upper left corner window 2
mov dx,4Al0h ;Lower right corner window 2
call scrollup ;Scroll up

’

mov
int
jne

7

pop
add
anp
jne
Imp

’

end it: xor
int
mov
call
call
Jmp

demo endp
;== Functions
—- SOFF: swit
—-- Input

-- Output :
-- register :

Se Na s sl

SOFF proc
mov
in
and
out
ret

SOFF endp

Was a key pressed? (end program) —-—————————————————

ah,1 ;Function number for testing key
16h ;Call BIOS keyboard interrupt
end it ;Keypress -> goto end of program

NO, display next arrow

bx ;Pop BX from stack again
bl,2 72 more stars in next line
bl,17 ;Reached 17 ?

arrow0 ;NO --> next arrow

arrow ;No key -=> next arrow

Get ready to end program

ah,ah ;Get function number for key
16h ;Call BIOS-keyboard-interrupt
cx, 0DOCh sRestore normal cursor

cdef

cls ;Clear screen

ende ;Go to end of program

ches the display off

none

none

AX and DX are changed

near

dx, CONTROL_REG ;Address of display control register
al,dx ;read its content

al,11110111b ;bit 3 = 0: display off

dx,al ;set new value (display off)

sback to caller

Abacus 10.2 The IBM Monochrome Card

SON: switches the display on
Input : none

;=— Output : none

;-—- register : AX and DX are changed

SON proc near
mov dx,CONTROL_REG ;Address of display control register
in al,dx ;Read its content
or al,s8 ;Bit 3 = 1: display on
out dx,al ;Set new value (display on)
ret ;Back to caller
SON endp

;-- CDEF: sets the start and end line of the cursor ===——-———--—--
;—— Input : CL = Start line

i CH = End line

7-— Output : none

;-- register : AX and DX are changed

cdef proc near

mov al,CUR_START sRegister 10: start line

mov ah,cl ;Start line to AH

call setvk ;Transmit to video controller

mov al,CUR_END ;Register 11: end line

mov ah,ch 7End line to AH

jmp short setvk ;Transmit to video controller
cdef endp

—-- SETBLINK: sets the blinking display cursor

H

;== Input : DI = offset address of the cursor
s—-— Output : none

;-- register : BX, AX and DX are changed

setblink proc near

mov bx,di ;Transmit offset to BX

mov al,CURPOS_HI sRegister 15:Hi-byte of cursor offset
mov ah,bh ;HI-byte of the offset

call setvk ;Transmit to video controller

mov al,CURPOS_LO ;Register 15:Lo-byte of cursor offset
mov ah,bl ;Lo-byte of the offset

;=- SETVK is called automatically

setblink endp

;-SETVK: sets a byte in one of the registers of the video controller --
7-— Input : AL = number of the register

;- AH = new content of the register

;== Output : none

;-- register : DX and AL are changed

setvk proc near

mov dx,ADDRESS_ 6845 ;Address of the index register

out dx,al ;Send number of the register
jmp short $+2 ;Small I/O pause
inc dx ;Address of the index register
mov al,ah ;Content to AL
out dx,al ;Set new content
ret ;Back to caller

setvk endp

;-— GETVK: reads a byte from one register of the video controllers -
;- Input : AL = number of the register

4717

10. Accessing and Programming the Video Cards PC System Programming

;— Output : AL = content of the register
;- register : DX and AL are changed

getvk proc near

mov dx,ADDRESS_6845 ;Address of the index register

out dx,al ;Send number of the register
jmp short $+2
inc dx ;Address of the index register
in al,dx ;Read content to AL
ret ;Back to caller

getvk endp

== SCROLLUP: scrolls a window up by N lines ——=-———e—eeeeee

-— Input : BL = line upper left
- BH = column upper left
- DL = line lower right
- DH = column lower right
- CL = number of lines to scroll

== Output : none

-- register : only FLAGS are changed

-- Info the display lines released are erased

SE Ne Ne Ne Ne S e e Se

scrollup proc near

cld ;Increment on string instructions
push ax ;Push all changed registers on the
push bx ;stack
push di ;In this case the sequence
push si ;must be observed!
push bx ;These three registers are restored
push cx ;from the stack before ending
push dx
sub dl,bl ;Calculate the number of lines
inc dl
sub dl,cl ;Deduct number of lines scrolled
sub dh,bh ;Calculate number of columns
inc dh
call calo ;Convert upper left in offset
mov si,di ;Record Address in SI
add bl,cl ;First line in scrolled window
call calo ;Convert first line to offset
xchg si,di ;Exchange SI and DI
push ds ;Store segment register on
push es sthe stack
mov ax,VIO SEG ;Segment address of the video RAM
mov ds,ax sto DS
mov es,ax ;and ES
supl: mov ax,di ;Record DI in AX
mov bx,si ;sRecord SI in BX
mov cl,dh ;Number of column in counter
rep movsw ;Move a line
mov di,ax ;Restore DI from AX
mov si,bx ;Restore SI from BX
add di,160 ;Set next line
add si,160
dec dl ;Processed all lines ?
jne supl sNO —--> move another line
pop es ;Get segment register from
pop ds sstack
pop dx ;Get lower right corner
pop cx ;Read number of lines
pop bx ;Get upper left corner
mov bl,dl ;Llower line to BL
sub bl,cl ;Deduct number of lines
inc bl
mov ah,07h ;Color : black on white

478

Abacus

10.2 The IBM Monochrome Card

call

pop
pop
pop
pop
ret

scrollup endp

- Input :

clear ;Erase lines freed
si ;CX and DX have already
di sbeen read
bx
ax
sBack to caller

—- SCROLIDN: scrolls a window down N lines ————-—————————-

BL = line upper left

BH = column upper left

DL = line lower right

DH = column lower right

CL = number of lines to scroll

—— Output : none
-- register : only FLAGS are changed
-- Info : display lines released are erased
scrolldn proc near
cld ;Increment on string instructions
push ax ;Store all changed registers on the
push bx ;stack
push di ;In this case the sequence
push si ;must be observed !
push bx ;These three registers are returned
push cx ;from the stack before the end
push dx ;of the routine
sub dh,bh ;Calculate the number of the column
inc dh
mov al,bl sRecord line upper left in AL
mov bl,dl ;Line upper right to line upper left
call calo ;Convert upper left into offset
mov si,di ;sRecord address in SI
sub bl,cl ;Deduct number of lines to scroll
call calo ;Convert upper left in offset
xchg si,di ;Exchange SI and DI
sub dl,al ;Calculate number of lines
inc dl ;Deduct number
sub dl,cl ;of lines to be scrolled
push ds ;Push segment register onto stack
push es
mov ax,VIO SEG ;Segment address of video RAM
mov ds,ax ;to Ds
mov es,ax sand ES
sdnl: mov ax,di ;Move DI to AX
mov bx,si ;sMove SI to BX
mov cl,dh sNumber column in counter
rep movsw ;Scroll one line
mov di,ax ;Get DI from AX
mov si,bx ;Restore SI from BX
sub di, 160 ;Set next line
sub si,160
dec dl ;All lines processed ?
jne sdnl ;NO --> scroll another line
pop es ;Get segment register from
pop ds ;stack
pop dx ;Return lower right corner
pop cx ;sReturn number of lines
pop bx ;Return upper left corner
mov dl,bl ;Upper line to DL
add dl,cl ;Add number of lines
dec dl
mov ah,07h ;Color : black on white

479

10. Accessing and Programming the Video Cards PC System Programming

call clear ;Erase lines which were released
pop si ‘ ;CX and DX are

pop di ; already returned

pop bx

pop ax

ret ;Back to caller

scrolldn endp

-- CLS: Clear the complete screen
—— Input : none
-- Output : none
-- register : only FLAGS are changed

cls proc near
mov ah,07h ;Color is white on black
xor bx,bx ;Upper left is (0/0)
mov dx, 4F18h ;Lower right is (79/24)

;—— Execute Clear

cls endp

;-— CLEAR: fills a designated display with space characters —----

;= Input : AH = Attribute/color .
;- BL = line upper left

e BH = column upper left

;- DL = line lower right

;- DH = column lower right

;== Output : none

;—— register : only FLAGS are changed

clear proc near
cld ;Increment on string instructions
push cx ;Store all registes which
push dx ;are changed on the stack
push si
push di
push es
sub dl,bl ;Calculate number of lines
inc d1
sub dh,bh ;Calculate number of columns
inc dh
call calo ;O0ffset address of upper left corner
mov cx,VIO SEG ;Segment address of the video RAM
mov es,cx ;to ES
xor ch,ch ;Hi-bytes of the counter to 0
mov al,™ * ;Space character
clearl: mov si,di ;Move DI to SI
mov cl,dh ;Number of column in counter
rep stosw ;Store space character
mov di,si sRestore DI from SI
add di, 160 ;Set in next line
dec dl ;All lines processed ?
jne clearl ;NO --> erase another line
pop es ;Restore registers from
pop di ;stack
pop si
pop dx
pop cx
ret ;Back to caller
clear endp

;7—— PRINT: outputs a string on the Display

480

Abacus

10.2 The IBM Monochrome Card

Input

Info

S5 Ne Ne Se Ne Se e

Output H
register :

AH = Attribute/color

DI = offset address of the first character

SI = offset address of the string to DS

DI points behind the last character output

AL, DI and FLAGS are changed

the string must be terminated with a NUL-character.
other control characters are not recognized

print proc near
cld ;Increment on string instructions
push si ;Store SI, DX and ES on the stack
push es
push dx
mov dx,VIO SEG ;Segment address of the video RAM
mov es,dx ;First to DX and then to ES
jmp printl ;YES --> Output finished
print0: stosw ;Store attribute and color in V-RAM
printl: lodsb ;Get next character from the string
or al,al ;Is it NUL
Jjne print0 ;NO --> output
printe: pop dx ;Get SI, DX and ES back from stack
pop es
pop si
ret ;Back to caller
print endp
;- CALO: converts line and column into offset address ---—---—--—-—-——-—-
;- Input : BL = line
;- BH = column
;== Output : DI = the offset address
;—— Registers: DI and FLAGS are changed
calo proc near
push ax ;Store AX on the stack
push bx ;Store BX on the stack
shl bx,1 ;Column and line times 2
mov al,bh ;Column to AL
xor bh,bh ;Get Hi-byte
mov di, [linen+bx] ;Offset address of the line
xor ah,ah ;HI-byte for column offset
add di,ax ;Add line- and column offset
pop bx ;Get BX from stack again
pop ax ;Get AX from stack again
ret ;Back to caller
calo endp
;== End
code ends ;End of the CODE segment
end demo ;Start program execution w/ demo

481

10. Accessing and Programming the Video Cards PC System Programming

10.3 The Hercules Graphic Card

The Hercules display adapter displays text in both text mode and graphics mode,
with a graphic resolution of 720x348 pixels. This card contains enough RAM for
two display pages. Each display page is 32K, so video RAM can accept a 4K text
page and a graphic page. The first display page extends from address B000:0000 to
BOO0O:7FFF. The second screen page goes from B000:8000 to BOOO:FFFF.

Hercules video RAM

The Hercules card's video RAM in text mode has the same cursor character and port
addresses as the IBM monochrome display adapter. With the graphic capabilities,
only a few bits in the status and control register are different from the monochrome
card. An additional configuration register can be addressed from 3BFH. You can
write to this register only. Only bits 0 and 1 are of interest to the programmer.
The former indicates whether the graphic mode can be switched on (1) or not (0).
Bit 1 determines whether the second display page can be used. Bit 1 contains the
value 1 if the second page is usable.

To avoid conflicts with other video cards (especially color cards), both bits are set
to 0 at the start of the system so that né€ither graphic mode nor the second display
page are accessible at first. Application programs must configure the Hercules
display adapter through the configuration register if the programs require graphic
mode or the second screen page.

The control register of the Hercules graphic card has some differences from that of
the MDA discussed in the preceding section.

O=text mode
1=graphic mode
O=screen off
1=screen on

O=blinking disabled
1=blinking enabled

0O=dIsplay screen
page 1

1=display screen
page 2

The Hercules control register (3B8H)

Abacus

103 The Hercules Graphic Card

Unlike the IBM monochrome display adapter, bit 0 is unused and doesn't have to
be set to 1 during the system boot. Bit 1 determines text or graphic mode: a 0 in
bit 1 enables text mode, while a 1 in bit 1 enables graphic mode. As you shall see
in the following examples, changing these bits isn't enough to switch between
text and graphic modes. The internal registers of the 6845 must be reset as well.
During this process, the screen display must be switched off to prevent the 6845
from creating garbage during its reprogramming.

The Hercules card has a seventh bit in this register. Its contents determine which of
the two screen pages appear on the monitor screen. If this bit is 0, the first screen
page appears; a 1 calls the second screen page on the screen. Independent of each
other, the user can write to or read from either page at any time. You can only
write to this register; attempts to read this register return the value FFH. Because
of this, it is impossible to switch off the display simply by reading the contents of
the status register and erasing bit 3, regardless of the display mode and the screen
page selected.

bit

Horizontal
synchronization
signal: O=off, 1=on
0=Current pixel off
1=Current pixel on

Vertical
synchronization
signal: O=on, 1=off

Hercules status register (3BAH)

Only the significance of bit 7 makes this register different from the IBM
monochrome card. It's always set to 0 when the 6845 sends a vertical
synchronization signal to the display. This signal is always sent when the last
screen line has been constructed. The electron beam, which constructs the display,
then jumps to the first line of the screen to start constructing a new screen.

Since the Hercules card uses the same processor as the IBM card, the internal
registers of the 6845 and their meaning are identical to the IBM card. The index
register and data register are also located at the same address. The following values
must be assigned to the various registers in the text and graphic modes
respectively:

483

10. Accessing and Programming the Video Cards PC System Programming

484

No. | Meaning Text Graphic
0 Horizontal character seeded g7 3
1 Horizontal character displayed 80 45
2 Horiz. synchronization signal after..character 82 46
3 Horiz. synchronization signal width 15 7
4 Vertical character seeded 25 a1
5 Vertical character justified 6 2
6 Vertical character displayed 25 81
7 Vert. synchronization signal after..character 25 g7
8 Interlace mode 2 2
9 Number of ccan-lines per line 13 3
10 Starting line of blinking cursor 11 0
1 Ending line of the blinking cursors 12 0
12 High byte of screen page starting address 0 0
13 Low byte of screen page starting address 0 0
14 High byte of blinking cursor char. address 0 0
15 Low byte of blinking cursor char. address 0 0
16 Reserved

17 Reserved

As mentioned earlier, the Hercules card in graphic mode provides 348x720
resolution. Every pixel on the screen corresponds to one bit in the video RAM. If
the corresponding bit contains the value 1, the dot is visible on the display,
otherwise it remains dark. The following figure shows the construction of the
video RAM in the graphic mode.

Abacus

103 The Hercules Graphic Card

+0000(h) | Line O (90 bytes)
+005A(h) | Line 4 (90 bytes)
40054. (h) j Line 8 (90 bytes)
+1D88 (h) |Line 336 (90 bytes)
+1DE2 (h) | Line 340 (90 bytes)
+1E3C(h) | Line 344 (90 bytes)
+1£96 (h) [unused (362 bytes) |
+2000(h) | Line 1 (90 bytes) RA M
+205A(h) | Line S (90 bytes)
*ZOB:(h) Line 9 (90 bytes) 000030000
#30"2(]:) Line 337 (90 bytes)
+3DE2 (h) | Line 341 (90 bytes)
+3E3C(h) | Line 345 (90 bytes)
+3E96 (h) | unused (362 bytes)
+4000 (h) | Line 2 (90 bytes)
+405A (h) | Line 6 (90 bytes)
*1054. (h) | Line 10 (90 bytes)
+50!;(h) Line 338 (90 bytes)
+5DE2 (h) | Line 342 (90 bytes)
+5E3C(h) | Line 346 (90 bytes)
+5E96 (h) | unused (362 bytes)
+6000(h) | Line 3 (90 bytes)
+605A (h) | Line 7 (90 bytes)
+60B4 (h) | Line 11 (90 bytes)
#700;()\) Line 339 (90 bytes)
+TDE2 (h) | Line 343 (90 bytes)
+7E3C (h) | Line 347 (90 bytes)
+7E96 (h) | unused (362 bytes)
+8000 (h)

Video RAM and the screen under construction

The bit patterns of the individual lines in the video RAM aren't arranged
sequentially, as you might have assumed. The 32K of video RAM is divided into
four 8K blocks. The first block contains the bit pattern for any lines divisible by 4
(0, 4, 8, 12, etc.). The second block contains the bit patterns for lines 1, 5, 9, 13
etc. The third block contains the bit patterns for lines 2, 6, 10, 14, etc., while the
last block contains lines 3, 7, 11, 15 etc. When the 6845 generates a display, it
obtains information for screen line zero from the first data block, screen line one
from the second data block, etc. After it has obtained the contents of the third
screen line from the fourth data block, it accesses the first data block again for the
structure of the fourth line. Each line requires 90 bytes within the individual data
blocks—every pixel requires a bit, and 720 pixels divided by 8 bits (per byte)
equals 90. The first 90 bytes in the first memory area provide the bit pattern for
screen line zero, and the 90 bytes following provide the bit pattern for the fourth
screen line. The zero byte of one of these 90-byte sets represents the first eight
columns of a screen line (columns 0-8). The first byte represents columns 8-15,

485

10. Accessing and Programming the Video Cards PC System Programming

etc. Within one of these bytes, bit 7 corresponds to the left screen pixel and bit 0
corresponds to the right screen pixel.

RAM

0000:0000

+85 +86 +87 +88

32 1 0 bit

Column 01 2 34 5 6 7 Column 712 accssscscssrnenn 119

Relationship between 90-line bytes and screen display

If the screen pixels of a line (0 to 719) and the screen pixels of a column (0 to
347) are sequentially numbered, an equation indicates the address of the bytes
relative to the beginning of the screen page. This address contains the information
for a pixel with the coordinates X/Y.

To determine the bit within the byte which represents the pixel, the following
formula can be used:

Address = 2000H * (Y mod 4) + 90 * int(Y/4) + int (X/8)

The following program demonstrates the abilities of the Hercules display adapter.
The individual routines within this program have some differences from the
routines shown in the monochrome display adapter demo program from the
previous section. The routines here enable access to both screen pages, and support
the Hercules graphic mode.

Assembler listing: VHERC.ASM

486

SRR AR R R AR AR R R AR R R A AR AR R A AR R AR R A AR AR AR R A AR R AR AR R AR R AR R AR R AR A AR AR AR AN

;
i* VHERC *;
i* *;
> Task : makes a basic function available for *;
* access to the HERCULES GRAPHICS CARD *:
i *3
A Info : all functions partition the screen display *2
* into columns 0-79 and lines 0-24 (text mode) *;
i & columns 0-719 and lines 0-347 (graphic mode) *;
ok *e

*
e se s

* Author
o * developed on

MICHAEL TISCHER
8/11/87 *

o o

Abacus 103 The Hercules Graphic Card

T * last update : 6/15/89 *:
o+ *;
i assembly : MASM VHERC; *;
* LINK VHERC; *7
i : *;
i call : VHERC *;
ok

H tkﬁkkﬁkﬁﬁt*ttttii‘ﬁkﬁkﬁkktiiitttiﬁkﬁkﬁkﬁkﬁkﬁﬁk*iiti'ﬁﬁktkﬁititttit*tt;

;== Constants

CONTROL_REG = 03B8h ;Control register port address
ADDRESS_ 6845 = 03B4h ;6845 address register
DATA_6845 = 03BS5h 76845 data register
CONFIG REG = 03BFh sConfiguration register
VIO SEG = 0BOOOh ;Video RAM segment address
CUR_START =10 ;Reg. # for CRTC: Start cursor line
CUR_END =11 sReg. # for CRTC: End cursor line
CURPOS_HI =14 ;Reg. % for CRTC: Cursor pos hi byte
CURPOS_LO = 15 ;Reg. # for CRTC: Cursor pos lo byte
DELAY = 20000 ;Count for delay loop
;== Macros
setmode macro modus ;Set control register
mov dx,CONTROL_REG iScreen control register address
mov al,modus ;Put new mode in AL register
out dx,al ;Send mode to control register
endm
setvk macro ;Write value to CRTC registers
;Input: AL = register number
; AH = Value for register

mov dx,ADDRESS_ 6845 ;Index register address

out dx,ax ;Display register number and new value
endm

;== Stack

stack segment para stack ;Definition of stack segment
dw 256 dup (?) ;Stack is 256 words in size

stack ends ;End of stack segment

;== Data

data segment para 'DATA® ;Define data segment

;== Data needed for demo program
initm 13,10, “VHERC (c) 1987 by Michael Tischer®,13,10,13,10
"This demonstration program runs only with *

* a HERCULEs",13,10,“graphics card. If your PC *

“has another type of display card, *,13,10

*please input an >s< to stop the *

* program.*,13,10,"Otherwise please press any *

“key to start the *,13,10

“program ...%,13,10,%$"

strl
str2

1,17,16,2,7
2,16,17,1,7

&6 B8866BEEE

,0
,0
domes 13,10

*“This program creates a short graphic demo *,13,10
"and a text demo. Pressing a key during the®,13,10

&&&

487

10. Accessing and Programming the Video Cards PC System Programming

demo ends the program.,13,10

db
db “"Press a key to start the program...“,13,10,%$*

;== Table of line offset addr:

lines dw 0%*160,1*160,2*160 ;Beginning addresses of the lines as
dw 3*160,4*160,5*160 ;offset addresses in video RAM
dw 6*160,7*160,8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160
dw 17*160,18%*160,19*160,20*160,21*160,22*160,23*160,24*160

grafikt db 35h, 2Dh, 2Eh, 07h, 5Bh, 02h ;Register values for the
db 57h, 57h, 02h, 03h, 00h, 00h ;graphic mode

textt db 61h, 50h, 52h, OFh, 19h, 06h ;Register values for the
db 19h, 19h, 02h, ODh, OBh, Och ;text mode

data ends ;End of data segment

;== Code segment
code segment para ‘CODE' ;Definition of the code segment
oZg 100h

assume cs:code, ds:data, es:data, ss:stack

;== this 1is only the Demo-Program

demo proc far
mov ax,data ;Get segment address of data segment
mov ds,ax ;Load into DS
mov es,ax sand ES

;-- Opening msg., wait for input

mov ah,9 ;Output function number for string
mov dx,offset initm ;address of the message
int 21h ;Call DOS interrupt
xor ah,ah ;Get function number for key
int 16h ;Call BIOS keyboard interrupt
cmp al,%s* ;Was <s> entered?
Je ende ;YES--> End program
cmp al,“s* ;Was <S> entered?
Jne startdemo ;NO -=> Start demo
ende: mov ax,4C00h ;Function number - end program
int 21h ;Call DOS interrupt 21H
startdemo label near
mov ah,9 ;Output function number for string
mov dx,offset domes ;saddress of the message
int 21h ;Call DOS interrupt
xor ah,ah ;Get function number for key
int 16h ;Call BIOS keyboard interrupt

;—— Initialize graphic mode

mov al,11lb ;Graphic and page 2 possible
call config ;Configure

xor bp,bp sAccess display page 0

call grafik ;Switch to graphic mode

xor al,al

call cgr ;Erase graphic page 0

xor bx,bx ;Begin in the upper left
xor dx,dx ;Display corner

mov ax, 347 sVertical pixels

488

Abacus 103 The Hercules Graphic Card

mov cx,719 ;Horizontal pixels
grl: push cx ;Push horizontal pixels on stack

mov CX,ax ;Vertical pixels in counter

push ax ;Push vertical pixels on stack
gr2: call spix ;Set pixel

inc dx ;Increment line

loop gr2 ;Draw line

pop ax ;Get vert. pixels from stack

sub ax,3 ;next line 3 pixels less

pop cx ;Get horiz. pixels from stack

push cx ;Store horizontal pixels

push ax ;Push vertical pixels on stack
gr3: call spix ;Set pixel

inc bx ;Increment column

loop gr3 ;Draw line

pop ax ;Get vertical pixels from stack

pop cx ;Get horizontal pixels from stack

sub cx,6 ;Next line 6 pixels less

push cx ;Record horizontal pixels

mov CX,ax ;Vertical pixels in counter

push ax ;Note vertical pixels on stack
gré: call spix ;Set pixel

dec dx ;Decrement line

loop gr4 ;Draw line

pop ax ;Get vertical pixels from stack

sub ax,3 ;Next line 3 pixels less

pop cx ;Get horizontal pixels from stack

push cx sRecord horizontal pixels

push ax sRecord vertical pixels on stack
grs: call spix ;Set pixel

dec bx ;Increment column

loop grs ;Draw line

pop ax ;Get vertical pixels from stack

pop c¢x ;Get horizontal pixels from stack

sub cx,6 ;Next line 6 pixels less

cmnp ax, 5 ;Is the vertical line longer than 5

ja grl ;YES --> continue

xor ah,ah ;Walt for function nr. for key

int 16h ;Call BIOS keyboard interrupt

;-- Initialize text mode

call text ;Switch on text mode

mov cx,0d00h ;Switch on full cursor

call cdef

call cls ;Clear screen

;~- Display strings in display page 0 ——=—————————————q

xor bx,bx ;Start in upper left display corner

call calo ;Convert to offset address

mov si,offset stril ;O0ffset address of stringl

mov cx,16%25 :The string is 5 characters long
demol: call print ;Output string

loop demol

;-- Display strings in display page 1 ——-=——==———————auu

inc bp ;Process display page 1

xor bx,bx ;Start in the upper left corner

call calo ;Convert to offset address

mov si,offset str2 ;Offset address of stringl

mov Ccx,16*25 ;string 1s 5 characters long
demo2: call print ;Output string

loop demo2
demo3: setmode 10001000b ;Display text page 1

;-- short Pause

489

10. Accessing and Programming the Video Cards PC System Programming

mov c¢x,DELAY ;Load counter
pause: loop pause ;Count to 65,536
setmode 00001000b ;Display page 0
;=- short pause
mov cx,DELAY ;Load counter
pausel: loop pausel ;Count to 65,536
mov ah,l ;Test function nr. for key
int 16h ;Call BIOS-keyboard-Interrupt
je demo3 ;No key —-> continue
xor ah,ah ;Get function number for key
int 16h ;Call BIOS-keyboard-Interrupt
mov bp,0 sDisplay page 1
call cls ;Clear screen
mov cx,0D0ch ;Restore normal cursor
call cdef
call cls sClear screen
jmp ende ;End program
demo endp

;== The actual functions follow

—- CONFIG: configures the HERCULES card
-- Input : AL : bit 0 = 0 : Only text presentation possible

- 1 : also graphic presentation possible
- bit 1 = 0 : RAM for display page 2 off
- 1 : RAM for display page 2 on

-- Output : none
-- Register : AX and DX are changed

;
;
i
H
’
’
H

config proc near
mov dx,CONFIG_REG ;Address of configuration register
out dx,al ;Set new value
ret ;Back to caller

config endp

;—- TEXT: switches the text presentation on
;== Input : none

;—— Output : none

;—- Register : AX and DX are changed

text proc near
mov si,offset textt ;Offset address of the register-table
mov bl,00100000b ;Display page 0,text mode,blinking
jmp short vcprog ;Program video-controller again

text endp

;—— GRAFIK: switches on the graphic mode
;—— Input : none

;—— Output : none

;—- Register : AX and DX are changed

grafik proc near

mov si,offset grafikt ;Offset address of the register-table
mov bl,00000010b ;Display page 0, graphic mode

grafik endp

;—— VCPROG: programs the video controller
;-- Input : SI = address of a register-table

490

Abacus

103 The Hercules Graphic Card

’

;== Output
;—- regist
vcprog

vepl:

veprog

-- cDEF:
Input

Output
regist

o Se Se e Se

cdef

cdef

-- SETBLINK

;
;== Input
;== Output
H

-- register

setblink

setblink

;=- GETVK
;-- Input
;
;

-- Output
-- register

getvk

BL = value for display-control-register

none

er
proc near
setmode bl

mov cx,12
xor bh,bh
lodsb

mov ah,al
mov al,bh
setvk

inc bh
loop vepl
or bl,8
setmode bl
ret

endp

sets the start and end line of the cursor

: cL = start line
cH = end line
none

er
proc near

mov al,CUR_START
mov ah,cl

setvk

mov al,CUR_END
mov ah,ch

setvk

ret

endp

none

proc near

mov bx,di

mov al,CURPOS_HI
mov ah,bh

setvk

mov al,CURPOS_;D
mov ah,bl

setvk

ret

endp

: sets the blinking display cursor
: DI = offset address of the cursor

AX, SI, BH, DX and FLAGS are changed

;Bit 3 = 0: display aus

;12 registers are set

;Start with register 0

;Get register value from the table
;Register value to AH

;Number of the register to AL
;Transmit value to the controller
;Address next register

;Set additional registers

;Bit 3 = 1: display on
;Set new mode
;Back to caller

AX and DX are changed

;Register 10: start line
;Start line to AH

;Transmit to video-controller
;Register 11: Endline

;End line to AH

;Transmit to video-controller

BX, AX and DX are changed

;Transmit offset to BX

sRegister 15:Hi Byte of cursor offset
;HI byte of the offset

;Transmit to video-controller
;Register 15:Lo-Byte of cursor offset
;Lo byte of the offset

;Transmit to CRTC

reads a byte from one register of the video-controller -

proc near

mov dx,ADDRESS_6845
out dx,al

Jmp $+2

inc dx

AL = content of the register

: AL = number of the register
: DX and AL are changed

;Address of the index register
;Send number of the register
;Short io pause

;Address of the index register

491

10. Accessing and Programming the Video Cards

492

in
ret

getvk endp

;== SCROLLUp: scrolls a window by N lines upward

;== Input :

Se Se Se Se Se Se e Se

al,dx

;Read content to AL
;Back to caller

PC System Programming

BL = line upper left

BH

= column upper left
DL = line lower right
= column lower right

CL = number of the lines to be scrolled
BP = number of the display page (0 or 1)

only FLAGS are changed
the display lines released are erased

-- Output : none

-- register :

-- Info :

scrollup proc near
cld
push ax
push bx
push di
push si
push bx
push cx
push dx
sub dl,bl
inc dl
sub dl,cl
sub dh,bh
inc dh
call calo
mov si,di
add bl,cl
call calo
xchg si,di
push ds
push es
mov ax,VIO_SEG
mov ds,ax
mov es,ax

supl: mov ax,di
mov bx,si
mov cl,dh
rep movsw
mov di,ax
mov si,bx
add di, 160
add si,160
dec dl
jne supl
pop es
pop ds
pop dx
pop cx
pop bx
mov bl,dl
sub bl,cl
inc bl
mov ah,07h
call clear
pop si
pop di
pop bx
pop ax
ret

;Increment for string instructions
;Store all changed registers

;on the stack

;In this case the sequence

;must be followed !

;These three registers are returned
;from the stack before

;the end of the routine

;Calculate number of lines

;Deduct number

;of lines to be scrolled

;Calculate number of columns

;Convert upper left in offset
;Note address in SI

;First line in scrolled window
;Convert first line in offset
;Exchange SI and DI

;Store segment register

;on the stack

;Segment address of the video RAM
;to DS

sand ES

;Note DI in AX

;Note SI in BX

;sNumber of columns in counter
;Move a line

;Restore DI from AX

;Restore SI from BX

;Set next line

;Processed all lines ?

;NO -=> move another line
;Get segment register from
;stack

;Get lower right corner
;Get number of lines

;Get upper left corner
;Lower line to BL

;Deduct number of lines

;Color : black on white
;Erase liberated lines

;CX and DX have been brought back
salready

;Back to caller

Abacus

103 The Hercules Graphic Card

scrollup endp

Input H

N8 NE e N NE o Ne N Ne % N

SCROLLDN: scroll a Window by N lines upwards

BL = line upper left

BH = column upper left

DL = line lower right

DH = column lower right

CL = number of the lines to be scrolled
BP = number of the display page (0 or 1)

only FLAGS are changed
released lines are deleted

-- Output i none

-- register :

-- Info H

scrolldn proc near
cld
push ax
push bx
push di
push si
push bx
push cx
push dx
sub dh,bh
inc dh
mov al,bl
mov bl,dl
call calo
mov si,di
sub bl,cl
call calo
xchg si,di
sub dl,al
inc d1
sub dl,cl
push ds
push es
mov ax,VIO_ SEG
mov ds,ax
mov es,ax

sdnl: mov ax,di
mov bx,si
mov cl,dh
rep movsw
mov di,ax
mov si,bx
sub di, 160
sub si,160
dec dl
jne sdnl
pop es
pop ds
pop dx
pop CXx
pop bx
mov dl,bl
add dl,cl
dec dl
mov ah,07h
call clear
pop si
pop di
pop bx
pop ax
ret

;Increment on string instructions

;Secure all changed registers on the
;stack

;In this case the sequence must

;be followed!

;These three registers are
;returned from the stack before the
;end of the routine

;Calculate number of columns

;Record line upper left in AL
;Line lower right top lower left
;Convert upper left in offset
;Note address in SI

;Deduct number of chars to scroll
;Convert upper left in offset
;Exchange SI and DI

;Calculate number of lines

;Deduct number of lines to scroll
;Store segment register on the
;stack

;Segment address of the video RAM
sto DS

;and ES

;Record DI in AX

sRecord SI in BX

;sNumber of columns in counter
;Move a line

sRestore DI frgﬁ AX

;Restore SI from BX

;Set next line

;All lines processed ?

;NO -=> move another line
;Get segment register from
sstack

;Get lower right corner
;Get number of lines

;Get upper left corner
;Upper line to DL

;Add number of lines

;Color : black on white
;Erase liberated lines

;CX and DX have already
;been read

;Back to caller

493

10. Accessing and Programming the Video Cards PC System Programming

scrolldn endp

;-- cLS: clear the whole screen

7—— Input : BP = number of the display page (0 or 1)
;—— Output : none

H :

-- register : only FLAGS are changed

cls proc near
mov ah,07h ;Color is white on black
xor bx,bx ;Upper left is (0/0)
mov dx,4F18h ;Lower right is (79/24)

;-- perform clear

cls endp
;—— CLEAR: fills a designated display area with space character —------
;-- Input : AH = Attribute/color
Fd BL = line upper left
;- BH = column upper left
;- DL = line lower right
;- DH = column lower right
;- BP = number of the display page (0 or 1)
7=— Output : none
;-- register : only FLAGS are changed
clear proc near
cld sIncrement on string instructions
push cx ;Secure all changed
push dx ;registers on the stack
push si
push di
push es
sub dl,bl ;Calculate number of lines
inc d1
sub dh,bh ;Calculate number of columns
inc dh
call calo ;Offset address of upper left corner
mov cx,VIO SEG ;Segment address of the video RAM
mov es,cx ;to ES
xor ch,ch ;Hi byte of the counter to 0
mov al," * ;Space character
clearl: mov si,di ;Note DI in SI
mov cl,dh ;Number of columns in counter
rep stosw ;Store space character
mov di,si ;Restore DI from SI
add di,160 ;Set next line
dec dl ;All lines processed ?
jne clearl ;NO --> erase another line
pop es ;Get secured registers
pop di ;from the stack
pop si
pop dx
pop cx
ret sBack to caller
clear endp
;—— PRINT: outputs a string on the display
;=— Input : AH = attribute/color
’— DI = offset address of the first character
- SI = offset address of the strings to DS
- BP = number of the display page (0 or 1)
;=- Output : DI points behind the last character to be output
;—— register : AL, DI and FLAGS are changed
;-— Info : the string must ne terminated with NUL-character.

494

Abacus

103 The Hercules Graphic Card

converts line and column into offset address

other control characters are not recognized

;Increment on string instructions
7SI, DX and ES to the stack

;First segment address of video RAM

;to DX and then to ES
;Get first character from string

;Store attribute and color in V-RAM
;Get next character from the string

;Is it NUL
;NO -=> output

;Get SI, DX and ES from stack again

;Back to caller

Bp = number of the display page (0 or 1)

;Record AX on the stack
;Record BX on the stack

;Column and line times 2
;Column to AL

;Hi byte

;Get offset address of the line
;Hi byte for column offset

;Add lines- and column offset
;Display page 0?2

;YES --> address ok

;Add 32 KB for display page 1
;Get BX from stack again

;Get AX from the stack again
;Back to caller

BP = number of the display page (0 or 1)

print proc near
cld
push si
push es
push dx
mov dx,VIO_SEG
mov es,dx
Jmp printl
print0: stosw
printl: lodsb
or al,al
jne print0
printe: pop dx
pop es
pop si
ret
print endp
7-- CcALO:
7—- Input : BL = line
;- BH = column
;-
;-— Output : DI = offset address
;—- register : DI and FLAGS are changed
calo proc near
push ax
push bx
shl bx,1
mov al,bh
xor bh,bh
mov di, [lines+bx]
xor ah,ah
add di,ax
or bp,bp
je caloe
add di,8000h
caloe: pop bx
pop ax
ret
calo endp
;== CGR: clear the complete graphic screen
;== Input :
;- AL = OOH : erase all pixels
;- FFH : set all pixels
-- Output none

H :
;—— register :

proc

push
cbw
xor
mov
or

Je

add

AH, BX, cX, DI and FLAGS are changed

near
es

di,di

bx, VIO_SEG
bp, bp

cgrl

bx, 0800h

sRecord ES on the stack

sExpand AL to AH

;Offset address in video RAM
;Segment address display page 0
;Erase page 1?

;NO --> erase page 0

;Segment address display page 1

\

495

10. Accessing and Programming the Video Cards PC System Programming

cgrl: mov es,bx ;Segment address to segment register
mov cx,4000h ;A page is 16K-words
rep stosw ;Fi11 page
pop es ;Get ES from stack
ret ;Back to caller
cgr endp

i=— SPIX: sets a pixel in the graphic display
;== Input : BP = number of the display page (0 or 1)
e BX = column (0 to 719)

;- DX = line {0 to 347)

+=— Output : none

; H

-- register : AX, DI and FIAGS are changed

spix proc near
push es ;Store ES on the stack
push bx ;Store BX on the stack
push cx ;Store cX on the stack
push dx ;Store DX on the stack
xor di,di ;0ffset address in video RAM
mov cx,VIO_SEG ;Segment address display page 0
or bp, bp ;Access page 1 ?
je spixl ;NO --> access page 0
mov cx,0800h ;Segment address display page 1
spixl: mov es,Cx ;Segment address in segment register
mov ax,dx ;Move line to AX
shr ax,1 ;Shift line right 2 times
shr ax,1 ;This divides by four
mov cl, 90 ;The factor is 90
mul cl ;Multiply line by 90
and dx,11b ;AND all bits except for 0 and 1
mov «c¢l,3 ;3 shifts
ror dx,cl ;Rotate right (* 2000H)
mov di,bx ;Column to DI
mov ¢l,3 ;3 shifts
shr di,cl ;divide by 8
add di,ax 7+ 90 * int (line/4)
add di,dx ;+ 2000H * (line mod 4)
mov cl,7 ;Maximum of 7 moves
and bx,7 ;Column mod 8
sub cl,bl ;7 - column mod 8
mov ah,1 ;Determine bit value of the pixels
shl ah,cl
mov al,es:([di] ;Get 8 pixels
or al,ah ;Set pixel
mov es:[di],al ;Write 8 pixels ;
pop dx ;Get DX from stack
pop c¢x ;Get cX from stack
pop bx ;Get BX from stack
pop es ;Get ES from stack
ret ;Back to caller
spix endp
;== End
code ends ;End of the code segment
end demo

496

Abacus

104 The IBM Color Card

10.4

The IBM Color Card

The IBM Color/Graphics Adapter (CGA) supports two text modes and three
different graphic modes. Like the other two cards, the CGA is based on a 6845
video processor and is equipped with 16K of video RAM which begins at address
B800:0000.

Text modes

Besides the normal text mode of 25 lines and 80 columns, the CGA also has a text
mode consisting of 25 lines and 40 columns. This 40-column mode displays
characters twice as wide as normal 80-column mode. CGA characters are displayed
in an 8x8 matrix, which results in a less distinct display than monochrome display
adapter text. The CGA's video RAM assignment is almost identical to that of the
monochrome card. The attribute byte is different from that of the monochrome

display adapter.

7 6 5 4 3 2 1 0 bit

Character color

Character Intensity
O=normal
1=high Iintensity

Background color

Blinking
O=off
1=0on

Color/Graphics Adapter attribute byte

The lower four bits of the attribute byte indicate one of the 16 available colors.
The meanings of the upper four bits depend on whether blinking is active. If it is
active, bits 4 to 6 indicate the background color (taken from one of the first eight
colors of the color palette), while bit 7 determines whether or not the characters
blink. If blinking is disabled, bits 4 to 7 indicate the background color (taken from
one of the 16 available colors).

497

10. Accessing and Programming the Video Cards PC System Programming

Decimal Hexadecimal Binary Color

0 0 0000 Black

1 1 0001 Blue

2 2 0010 Green

3 3 0011 Cyan

4 4 0100 Red

5 5 0101 Magenta

6 6 0110 Brown

7 7 0111 Light gray
8 8 1000 Dark gray

9 9 1001 Light blue
10 A 1010 Light green
11 B 1011 Light cyan
12 C 1100 Light red
13 D 1101 Light magenta
14 E 1110 Yellow

15 F 1111 White

Color/Graphics Adapter color palette

Each 80x25 text page requires 4,000 bytes of video RAM. 16K allows a total of
four text pages. The first display page starts at address B800:0000, the second at
B800:1000, the third at B800:2000 and the last at B800:3000. The 40x25 mode
allows storage of eight display pages, because each display page only requires
2,000 bytes in this mode. The first display page starts at address B800:0000, the
second at B800:0800, the third at B800:1000, etc.

Graphic modes

The CGA supports three different graphic modes, of which only two are usually
used. The color-suppressed mode displays 160x100 pixels with 16 colors. The
6845 supports this resolution, but the rest of the hardware doesn't offer color-
suppressed mode support. The remaining two graphic modes have resolutions of
320x200 and 640x200 respectively. The 320x200 resolution permits four-color
graphics, while 640x200 resolution only allows two colors.

320x200 resolution

498

The CGA uses up all 16K of its video RAM for displaying a graphic in 320x200
resolution with four colors. This limits the user to one graphic page at a time. Of
the four colors permitted, the background can be selected from the 16 available
colors. The other three colors originate from one of the two user-selected color
palettes, which contain three colors each.

Abacus

104 The IBM Color Card

Palette 1: Color 1: Cyan Palette 2: Color 1: Green
Color 2: Violet Color 2: Red
Color 3: White Color 3: Yellow

Since a total of four colors are available, each screen pixel requires two bits. Four
bits can represent the color numbers (0 to 3). The following values correspond to
the various colors:

0 00(b) = freely selectable background color
1 01(b) = color 1 of the selected palette
2 10(b) = color 2 of the selected palette
3 11(b) = color 3 of the selected palette

The video RAM assignment in this mode is similar to that of the Hercules card
during graphic display. The individual graphic lines are stored in two different
blocks of memory. The first block, which begins at address B800:0000, contains
the even lines (0, 2, 4...); the second block, which begins at B800:2000, contains
odd lines (1,3,5).

(80 RAM

(80 0000:0000
(80

(80
(80
(80
(192
(80
(80
(80

(80
(80

(80 :
(192 Bytes)F

Video RAM assignment in graphic mode (blocking)

Each graphic line within the two blocks requires 80 bytes, since the 320 pixels in
a line are coded into four pixels to a byte. The first byte in a graphic line (an 80-
byte series) corresponds to the first four dots of the graphic on the screen. Bits 7
and 8 contain the color information for the leftmost pixel, while bits 0 and 1
contain the color information for the rightmost pixel of the byte.

499

10. Accessing and Programming the Video Cards PC System Programming

500

RAM

0000:0000

oo WBHBWT

bit 7's|5fq 32JlO bit 7654 32 10
Column 0 1 2 3 Column 316 317 318 319

Graphic line coding in 320x200 resolution

A formula can be derived with the help of this information to determine the byte in
video RAM, similar to the Hercules card. This byte is relative to the starting
address of the screen page, which contains the color information for a pixel. The
screen column (0—319) is designated as X and the screen line (0—199) as Y:

Address = 2000H * (Y mod 2) + 80 * int(Y/2) + int(X/4)

To determine the number of the two bits within this byte which represents the
pixel, use the following formula:

Bit number = 6 - 2 * (X mod 4)

For example, if this formula rétums 4, this means that the color information for
the dot is coded into bits 4 and 5.

Abacus

104 The IBM Color Card

ee o

75 W78 [T

bit 7654 3210

Column 01 234567

bit 7654 32 10

RAM

Column 632....... ...639

0000:0000

Graphic line coding in 640x200 resolution

640x200 resolution

High-resolution mode with a resolution of 640x200 dots only allows the use of
two colors. The video RAM assignment in this mode is similar to 320x200 mode.
Each line displays twice as many pixels, with one bit encoding the line instead of
2 bits. Because of this, one screen line requires 880 bytes. Therefore the formulas

for access to a screen pixel are similar.

Address = 2000H * (Y mod 2) + 80 * int(Y/2)

Bit number = 7 - (X mod 8)

CGA registers

+ int (X/8)

The CGA has a mode selection register at address 3D8H which is comparable with
the control register of the monochrome display adapter. You can write to this

register but not read it.

501

10. Accessing and Programming the Video Cards PC System Programming

7 6 5 4 3 2 1 0 bit
—qi0=40x25 characters
1=80x25 characters

) I O=text mode
1=graphic mode (320x200)

O=color display
1=monochrome display
O=screen off

:ﬂraphlc mode (640x200)
O=bright background
1=blinking background

unused

Mode selection register

Bit layout

502

Bit 0 of this register determines the text mode display of 80 or 40 columns per
line. A 1 in bit 0 displays 80 columns, while a 0 in bit 0 displays 40 columns.

The status of bit 1 switches the CGA from text mode to the 320x200 bit-mapped
graphic mode. A 1 in this register selects graphic mode, while a 0 selects text
mode.

Bit 2 should be of interest to any users who want to operate their CGA with a
monochrome monitor. If this bit contains the value 1, the 6845 suppresses the
color signal, displaying monochrome mode only.

Bit 3 is responsible for creating screens. If it contains the value 0, the screen
remains black. This suppression is useful when changing between display modes;
it prevents sudden signals from reaching the monitor which could cause damage.

Bit 4 enables and disables 640x200 bitmapped graphic mode. A 1 in bit 4 enables
this mode, while a 0 disables it.

Bit 5 has the same significance as in the monochrome card. If it contains a 0,
blinking stops and bit 7 returns one of the 16 available background colors. This
bit contains a default value of 1, which causes blinking characters.

The various text or graphic modes and the color or monochrome display can be
selected in these modes with this register. Bits 0, 1, 2 and 4 are used for this. The
following table shows how these bits must be programmed to obtain certain
modes:

Abacus

104 The IBM Color Card

Bit 4 Bit 2

3

= Ll G =2 [=) [=d K=) [ad
[

(=1 (=4 I=d L 2 23 K=Y [ad
o

Result

40x25 text monochrome
40x25 text color

80x25 text monochrome
80x25 text color

320200 graphic monochrome
320x200 graphic color

640x200 graphic monochrome

Hlolo|®lo]eo
=1 (=1 =) (=] =) (=]

The CGA also has a status register similar to the status register in the
monochrome display adapter. The following figure shows the construction of this
register, which can be found at address 3DAH. It is a read-only register.

7 6 5 4 3 2 1 0 bit

1=memory access possible
without disturbing
screen contents

1=video access triggered
O=video access on
1=video access off

1=electronic signal
transmitted In
vertical direction

Status register structure

Bit 0 of this register always contains the value 1 when the 6845 sends a horizontal
synchronization signal to the monitor. This signal is transmitted when the creation
of a line ends and the CRT's electron beam reaches the end of the screen line. The
electron beam then jumps back to the left corner of the screen line. The bit gets its
significance from the condition that the CGA doesn't always allow data reading or
writing within video RAM.

Flickering and the CGA

This problem occurs because the 6845 must continuously access video RAM to
read its contents for screen display. If a program tries to transmit data to video
RAM, problems can arise when the 6845 accesses video RAM at the same time.
The result of this memory collision is an occasional flickering on the screen.

To avoid this problem, you should only access video RAM when the 6845 is not
accessing it. This only occurs when a horizontal synchronization signal travels to
the screen, because it requires a moment of time until the electron beam has carried

503

10. Accessing and Programming the Video Cards PC System Programming

out this instruction. For this reason, the status register must be read before every
video RAM access on a CGA. This process must be repeated until bit 0 contains
the value 1. When this happens, a maximum of two bytes can then be transmitted
to video RAM.

Demonstration program

The program at the end of this section demonstrates how this process functions.
This delay in video RAM access doesn't occur with monochrome cards because
they are equipped with special hardware logic and fast RAM chips. This is also
true of most of the newer model color cards. Before waiting for the horizontal
synchronization signal, which results in an enormous delay of the display output,
the user should try direct access to video RAM to test his color card's reaction
time.

If many accesses to video RAM occur within a short period of time (e.g., scrolling
the screen), the electron beam doesn't respond fast enough. The screen should be
switched off using bit 3 of the mode selection register. This prevents the 6845
from accessing video RAM, permitting unlimited user access to video RAM.
When data transfer ends, the screen can be switched on again. BIOS uses this
method during scrolling, which results in the flickering "silent movie effect.”

Color selection register

504

The color selection register is located at address 3D9H. This register is write-only
(cannot be read).

7 6 5 4 3 2 1 0 bit

Background color -
320x200 graphic mode,
border color in 40x25
text mode

1=Iintensive background

color In text mode
Number of color palette
used Iin 320x200 graphic
mode

Unused

Color selection register

The meanings of individual bits in this register depend on the display mode. Text
mode uses the lowest four bits for assigning the background color from the 16
available colors. In 320x200 graphic mode, these four bits indicate the color of all
pixels represented by the bit combination 00(b) (background color).

Abacus 104 The IBM Color Card

Bit S selects the color palette for 320x200 mode. If this bit contains the value 1,
the first color palette (cyan, violet, white) is selected. A value of 0 selects the
second color palette (green, yellow, red).

Internal registers

The 18 internal registers of the 6845 on this card are accessed exactly like the
monochrome card. The only difference is that the index and the data register are
located at 3D4H and 3D5H. The following table shows the contents which the
register must have for various display modes.

No.| Meaning Textl | Text2 | Graphics
0 Horiz. characters seeded 56 113 56
1 | Horiz. characters displayed 40 80 40
2 | Horiz. synchronization signal to 45 0 45
... Characters
3 | Horiz. synchronization signal 10 10 10
in characters
4 | Vert. characters seeded 3L 31 127
5 | vert. characters justified 6 6 6
6 | Vert. characters displayed 2 25 100
7 | Vert. synchronization signal to 2 28 112
.. characters
8 Interlace mode 2 2 2
9 | Number of scan-lines per line 7 7 1
10 | Starting line of blinking cursor 6 6 6
11 | Ending line of blinking cursor 7 7 7
12 | Display page starting address (high byte) 0 0 0
13 | Display page starting address (low byte) 0 0 0
14 | Cusrsor character address (high byte) 0 0 0
15 | Cursor character address (low byte) 0 0 0
16 | Reserved
17 | Reserved

These registers are of interest to the user since they define the position and
appearance of the cursor on the screen. Section 10.1 described programming these
registers. The CGA adds registers 12 and 13. They indicate the start of the video
page which must be displayed on the screen, as offset of the beginning of the 16K
RAM on the card (B800:0000), divided by 2. Register 12 contains the most
significant 8 bits of this offset, while register 13 contains the least significant 8
bits. Normally both registers contain the value 0, displaying the first screen page
(beginning at the address B800:0000) on the screen. For display of the first screen
page, which begins at location B800:1000 in the 80x25 text mode, the value
1000H divided by 2 (800H) must be entered in both registers.

The last of the three programs in this chapter accesses the color/graphics adapter.
The only significant difference between the two preceding programs lies in the fact
that the video controller can synchronize video RAM access and screen
construction. This is necessary on all video cards where direct access to video
RAM causes a flickering on the screen. The WAIT constant, defined directly after
the program header, switches synchronization on or off. Its contents decide during

505

10. Accessing and Programming the Video Cards

PC System Programming

the assembly of the program, whether to assemble the program lines for
synchronization listed in the source listing. These lines would slow down the
screen considerably, and should only be included if it is absolutely necessary.

Assembler listing: VCOL.ASM

H *ﬁﬁﬁ'*ﬁ**ﬁt'*t*ttﬁ*'*'.ﬁ'ﬁﬁttttttt'*t**i‘t'*ﬁﬁ*kﬁﬁ'*t*tt'*tkiﬁ‘ﬁ'**tﬁﬁ;

506

i* VCOL *;
i *;
i* Task : Makes some basic functions available for *;
i access to the Color Graphics Adapter (CGA) *;
. *e
’ ’
i Info ¢ All functions subdivide the screen *;
o into columns 0 to 79 and lines 0 to 24 *3
i in text mode and into columns 0 to 719 and *;
* the lines 0 to 347 in graphic mode. *;
* the 40 column text mode is not supported ! *;
2% A high resolution graphic screen should appear*;
i first, followed by a text screen. If the high *;
* res screen doesn't appear, try running the *;
% program a few times in succession. *3;
.k *e
;

i* Author : MICHAEL TISCHER *2
* Developed on : 8/13/87 *;
* Last update : 6/16/89 *;
. *s
;

* assembly : MASM VCOL (program will assemble with one *;
i* warning - it WILL link & run) *;
* LINK VCOL; *;
a *e
* Call : VCOL *;
;

KARR AR AR AR R A A AR R AR AR AR A R AR AR AR AR A AR AR AR AR AR AR R AR AR AR ARk kA kh o

;== Constants

CONTROL_REG = 03D8h ;Control register port address
CCHOICE REG = 03D%h ;Color select register port address
ADDRESS_6845 = 03D4h ;6845 address register

DATA 6845 = 03D5h ;6845 data register

VIO_SEG = 0B800Oh ;Video RAM segment address
CUR_START =10 ;Reg # for CRTC: Cursor start line
CUR_END =11 ;Reg # for CTRC: Cursor end line
CURPG_HI =12 ;Page address (high byte)

CURPG_LO =13 ;Page address (low byte)

CURPOS_HI =14 ;Reg # for CRTC: Cursor pos high byte
CURPOS_LO = 15 ;Reg # for CRTC: Cursor pos low byte
DELAY = 20000 ;Counter for delay loop

;== Macros

;-- SETMODE : Macro for configuring screen control register ————-----

setmode macro modus

mov dx,CONTROL_REG

mov al,modus ;New mode into the AL register

out dx,al

endm

;-— WAITRET: waits until display is completed

waitret macro

local wrl
mov dx,3DAh
wrl: in al,dx

;Send mode to control register

7Local label

;Address of the display status register

;Get content

;Address of the display control register

Abacus

104 The IBM Color Card

local

wrl:

;== Stack

stack

stack

;== Data

data

;== Data required for demo program

wrl ;Local label

mov dx,3DAh ;Address of the display status register
in al,dx ;Get content

test al,s8 ;Vertical retrace?

je wrl 7NO --> wait

endm

segment para stack ;Definition of stack segment

dw 256 dup (?) ;256-word stack

ends ;End of stack segment

segment para ‘DATA' ;Definition of data segment

initm db 13,10
db “VCOL (c) 1988,1989 by Michael Tischer “
db 13,10,13,10
db “This demo program only runs with a Color/Graphics*,13,10
db “Adapter (CGA). If your PC uses another type of*,13,10
db “video card press the <s> key to stop the program.%,13,10
db “Press any other key to start the program...“,13,10,%$*
strl db 1,0
;== Table of offset addresses of line beginnings

lines dw 0*160, 1*160, 2*160 ;start addresses of the lines as
dw 3*160, 4*160, 5*160 ;offset addresses in the video RAM
dw 6*160, 7*160, 8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160
dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160, 24*160

graphict

textt

wait

data

;== Code

db 38h, 28h, 2Dh, OAh, 7Fh, 06h ;register values for the
db 64h, 70h, 02h, 0l1h, 06h, 07h ;graphic-modes

db 71h, 50h, 5Ah, OAh, 1Fh, 06h ;register-values for the
db 1%h, 1Ch, 02h, 07h, 06h, 07h ;graphic-modes

code

;== Thils is only the Demo-Program

demo

switch:

db 0 ;TRUE (<>0) when caller uses the
;/F switch

ends ;End of data segment

segment para ‘'CODE' ;Definition of the CODE segment

assume cs:code, ds:data, es:data, ss:stack

proc far

;-— Look for /F from DOS prompt

mov cl,ds:128 ;Get number of bytes from prompt
or «cl,cl ;No parameters given?

je switchl ;NO --> Ignore

mov bx,129 ;BX points to first byte in prompt
mov ch,bh ;Set loop high byte to 0

cmp [bx],"F/* ;Switch in this position?

507

10. Accessing and Programming the Video Cards PC System Programming

je switchl ;YES --> Switch found
cnp [bx],“f/" ;Switch in this position?
Je switchl ;YES --> Switch found
inc bl ;Set BX to next character
loop switch ;Check next character
switchl: mov ax,data ;Get segment addr. of data segment
mov ds,ax ;and load into DS
mov es,ax ;and ES
mov wait,cl ;Set WAIT flag
;—— Display init message and walt for input ---—------—--
mov ah,9 ;Function number for string display
mov dx,offset initm ;Address of intial message
int 21h ;Call DOS interrupt 21H
xor ah,ah ;Function number: get key
int 16h ;Call BIOS keyboard interrupt
cmp al,%s“ ;<s> key pressed?
je ende ;YES --> End program
cmp al,%s* ;<S> key pressed?
jne startdemo ;NO --> Start demo
ende: mov ax, 4C00h ;Function number: End program
int 21h ;Call DOS interrupt 21H
startdemo label near
call grafhi sswitch on 320*200 pixel graphic
xor al,al
call cgr ;Clear graphic display
xor bx,bx ;Column O
xor dx,dx ;Line O
mov ax,199 ;Pixels~vertical
mov cx, 639 ;Pixels-horizontal
grl: push cx ;Record horizontal pixels
mov Cx,ax ;Vertical pixels to counter
push ax ;Record vertical pixels on the stack
mov al,l
gr2: call pixhi ;Set pixel
inc dx ;Increment line
loop gr2 ;Draw line
pop ax ;Get vertical pixels from the stack
sub ax,3 ;Next line 3 pixels less
pop cx ;Get horizontal pixels from the stack
push cx ;Record horizontal pixels
push ax ;Record vertical pixels on the stack
mov al,l
gr3: call pixhi ;Set pixel
inc bx ;Increment column
loop gr3 ;Draw line
pop ax ;Get vertical pixels from stack
pop c©x ;Get horizontal pixels from stack
sub cx,6 ;Next line 6 pixels less
push cx ;Record horizontal pixels
mov CX,ax ;Vertical pixels to counter
push ax ;Record vertical pixels on the stack
mov al,l
gr4d: call pixhi ;Set pixel
dec dx ;Decrement line
loop gr4 ;Draw line
pop ax ;Get vertical pixels from stack
sub ax,3 ;Next line 3 pixels less
pPop c¢x ;Get horizontal pixels from stack
push cx ;Record horizontal pixels
push ax ;Record vertical pixels on the stack
mov al,l
grs: call pixhi ;Set pixel

508

Abacus

104 The IBM Color Card

demol:

demo2:

demo

;== The actual functions follow

-- TEXT: switches the text display on

dec

bx

loop grs

pop
pop
sub
cmp
Ja

xor
int

Xor
mov

cal

ax
cx
cx,6
ax,5
grl

ah,ah
16h

1 text
bp, bp
al, 30h
ax,bp
strl,al

1 setcol

1 setpage

1 cls
bx, bx

1 calo
cx, 2000
ah,ah
si,offset ‘strl
ah

1 print

loop demo2

xor
int
inc
cmp
ine

Xor

ah,ah
16h
bp
bp, 4
demol

bp, bp

call setpage

Jmp

ende

endp

;Increment column

;Draw line

;Get vertical pixels from the stack
;Get horizontal pixels from the stack
;Next line 6 pixels less

;Is the vertical line longer than 5
;YES--> continue

;Wait for function number of key wait
;Call BIOS keyboard interrupt

;Switch on 80x25 character text mode
;Process screen page 0 first
;ASCII code "0*"

;Convert page number to ASCII
;Store in string

;Set color

;Activate screen page in BP
;Clear screen page

;Begin in the upper left

;Screen corner with output

;A page contains 2,000 characters
;Start with color code 0

;Offset address of string 1
;Increment color value

;Output string 1

sRepeat until screen is full

;Wait for key

;Call BIOS-Keyboard-Interrupt
;Increment page number

;All 4 pages processed ?

;NO --> then next page

;Activate page 0 again

;Goto program end

7
;== Input : none
;-- Output : none
;-- Register : AX, SI, BH, DX and FLAGS are changed
text proc near
mov si,offset textt ;Offset address of the register-table
mov bl,00100001b ;80x25 text mode,blinking
jmp short vcprog ;Program video controller again
text endp
7—- GRAFHI: switches the 640*200 pixel graphic mode On —=======—————ee—e——
-- Input : none
: none

H
;== Output
7

—- Reglister : AX, SI, BH, DX and FLAGS are changed

grafhi

grafhi

proc near

mov
Imp

bl,00010010b
short graphic

endp

;Graphic mode with 640*200 pixels
;Program video controller again

7-— GRAFLO: switches the 320%200 pixel graphic mode on -=-—=-=-—ce—eecec-

;-- Input
;—— Output

;-- Register

+ none

none

: AX, SI, BH, DX and FLAGS are changed

509

10. Accessing and Programming the Video Cards PC System Programming

graflo proc near

mov bl,00100010b ;Graphic mode with 320*200 pixels
graphic: mov si,offset graphict ;Offset address of the register table

graflo endp

VCPROG: programs the video controller
-- Input : SI = Address of a register table

BL = Value for display control register
Output : none
-- Register : AX, SI, BH, DX and FLAGS are changed

e Se

~e So Se

veprog proc near

setmode bl ;Bit 3 = 0: screen off
mov cx,12 ;12 registers are set
xor bh,bh ;Start with register 0
vepl: lodsb ;Get register value from table
mov ah,al ;Register value to AH
mov al,bh ;Number of the register to AL
call setvk ;Transmit value to controller
inc bh ;Address next register
loop vcpl ;Set additionzl registers
or bl,8 ;Bit 3 = 1: screen on
setmode bl ;Set new mode
ret ;Back to caller

veprog endp

;—- SETCOL : Sets the color of the display frame and Background -----
;=— Input : AL = color value

== Output : none

;—- register : AX and DX are changed

;== Info : in text mode the lowest 4 bits indicate the frame color
;- in graphic mode the lowest 4 bits indicate the frame
;= and background color, bit 5 selects the color palette

setcol proc near

mov dx,CCHOICE REG ;Address of the color selection register
out dx,al ;Output color value
ret ;Back to caller

setcol endp

;== CDEF sets the start and end line of the cursor —--—-—-======-
;== Input CL = start line

;- CH = end line

;=-- Output : none

;—— register : AX and DX are changed

cdef proc near

mov al,CUR START ;Register 10: start line

mov ah,cl ;Start line to AH

call setvk ;Transmit to video controller

mov al,CUR_END ;Register 11: end line

mov ah,ch 7End line to AH

jmp short setvk ;Transmit to video controller
cdef endp

-- SETPAGE

H : sets the screen page
;=— Input ¢ BP = Number of the screen page (0 to 3)
;== Output ¢ none

;-- register : BX, AX, CX and DX are changed

510

Abacus 104 The IBM Color Card

;—- Info : in the Graphic modes the first screen page has the
e number 0, the second the number 2
setpage proc near
mov bx,bp ;Screen page to BX
mov cl,5 sMultiply by 2,048
ror bx,cl
mov al,CURPG_HI sRegister 12: Hi byte page address
mov ah,bh ;Hi byte of the screen page to AH
call setvk ;Transmit to video controller
mov al,CURPG_LO ;Reglister 13: 1o byte page address
mov ah,bl ;Lo byte of the screen page to AH
jmp short setvk ;Transmit to video controller
setpage endp
;-— SETBLINK : sets the blinking cursor
+—— Input : DI = Offset address of the cursor
;=- Output : none
;- register : BX, AX and DX are changed

setblink proc near

mov bx,di ;Move offset to BX

mov al,CURPOS_HI ;Hi byte of the cursor offset
mov ah,bh ;HI byte of the offset

call setvk ;Transmit to video controller
mov al,CURPOS_LO ;Lo byte of the cursor offset
mov ah,bl ;Lo byte of the offset

;—— SETVK 1is called automatically

setblink endp

;=— SETVK : sets a byte in one register of the video controller —-——
;=- Input : AL = Number of the register

;- AH = new content of the register

;—-— Output : none

;-- register : DX and AL are changed

setvk proc near

mov dx,ADDRESS 6845 ;Address of the index register

out dx,al ;Send number of the register
jmp short $+2 ;Short I/O pause
inc dx ;Address of the index register
mov al,ah ;Content to AL
out dx,al ;Set new content
ret ;Back to caller

setvk endp

7=-- GETVK : gets a byte from one register of the video controller -
7=-- Input : AL = Number of the register

;=- Output : AL = Contents of register

;—- register : DX and AL are changed

getvk proc near

mov dx,ADDRESS 6845 ;Address of the index register

out dx,al ;Send number of the register
inc dx ;Index register address
jmp short $+2 ;Short io pause
in al,dx ;Set new contents
ret ;Back to caller
getvk endp

7-- SCROLLUP: scrolls a window N lines upward

511

10. Accessing and Programming the Video Cards

PC System Programming

512

s== Input :

-- Output :
-- register :
-- Info :

scrollup proc
cld

push
push
push
push

push
push
push
sub
inc
sub
sub
inc
call
mov
add
call
xchg

cmp
je

BL = line upper left

BH = column upper left

DL = line below right

DH = column below right

CL = Number of lines, to be scrolled
BP = Number of the screen page (0 to 3)

none

only FLAGS are changed
the display lines liberated are cleared

near

bx
di
si

bx

cx

dx
dl, bl
dl
dl,cl
bh,dh
dh
cale
si,di
bl,cl
calo
si,di

wait,0
sup0

waitret

setmode 00100101b

sup0: push
push
mov
mov
mov

supl: mov
mov
mov

ds

es
ax,VIO_SEG
ds,ax
es,ax

ax,di
bx,si
cl,dh

rep movsw

mov
mov
add
add
dec
jne

pop
pop

cmp
je

setmode 00101101b

sup2: pop
pop
pop
mov
sub
inc

di, ax
si,bx
di, 160
si, 160
dl
supl

es
ds

wait,0
sup2

;0n string commands count up

;All changed registers to the
;Secure stack

;In this case the sequence
;must be observed !

sThese three registers are returned
sbefore the end of the routine
;From the stack

;Calculate the number of lines

;Subtract number of lines to be scrolled
;Calculate number of columns

;Convert upper left in offset
;Record address in SI

;First line in scrolled window
s;Convert first line in offset
;Exchange SI and DI

;Flicker suppressed?
;NO -=> SUPO

;YES -->Wait for retrace
;Disable screen

;Store segment register

;0n the stack

;Segment address of the video RAM
;To DS

;And ES

sRecord DI in AX

sRecord SI in BX

;Number of columns in counter
;Move a line

sRestore DI from AX

;Restore SI from BX

;Set next line

sprocessed all lines ?
;NO —-> move another line

;Get segment register from
7Stack

;Flickering suppressed?
;NO --> SUP2

;YES --> Enable screen

;Get lower right corner back
sReturn number of lines
sReturn upper left corner
;Llower line to BL

;Subtract number of lines

Abacus

104 The IBM Color Card

mov
call

ret

scrollup endp

-- Input H

-- Output
-- register
-- Info

scrolldn proc
cld

push
push
push
push

push
push
push

sub
inc
mov
mov
call
mov
sub
call
xchg
sub
inc.
sub

cmp
Je

ah,07h
clear

si
di
bx
ax

—- SCROLIDN: scrolls a window N lines down

;Color : black on white
;Clear lines

+CX and DX have already been
sRestored

;Back to caller

BL = line upper left

BH = column upper left

DL = line below right

DH = column below right

CL = number of lines to be scrolled

BP = number of the screen page (0 to 3)

none

only FLAGS are changed
the display lines liberated are cleared

near

ax
bx
di
si

bx
cx
dx

dh,bh
dh
al,bl
bl,dl
calo
si,di
bl,cl
calo
si,di
dl,al
dl
dl,cl

wait,0
sdn0

wailtret

setmode 00100101b

sdn0: push
push
mov
mov
mov

sdnl: mov
mov
mov

ds

es
ax,VIO_SEG
ds,ax
es,ax

ax,di
bx,si
cl,dh

rep movsw

mov
mov
sub
sub
dec

di,ax
si,bx
di, 160
si, 160
dl

;0n string commands count up

sRecord all changed registers
;On the stack

;In this case the sequence
;sMust be observed !

;These three registers are returned
;From the stack before the end
;0f the routine

;Calculate the number of columns

;Record line upper left in AL

;Line below right to line below left
;Convert upper left in offset

;Record address in SI

;Subtract number of characters to scroll
;Convert upper left in offset

;Exchange SI and DI

;Calculate number of lines

;Subtract number of lines to be scrolled

;Flicker suppressed?
;NO --> SDNO

;YES --> Wait for retrace
;Disable screen

;Store segment register on the
7Stack

;Segment address of the video RAM
:To DS

sand ES

;Record DI in AX

;Record SI in BX

;Number of columns in counter
iMove a line

;Restore DI from AX

;Restore SI from BX

;Set into next line

;processed all lines ?

513

10. Accessing and Programming the Video Cards PC System Programming

jne sdnl ;NO —-> move another line
pop es ;Return segment register from
pop ds ;Stack
cmp wait,0 ;Flicker suppressed?
je sdn2 ;NO --> SDN2
setmode 00101101b ;YES —> Enable screen
sdn2: pop dx ;Get lower right corner
pop ¢©x sReturn number of lines
pop bx ;Return upper left corner
mov dl,bl ;supper line to DL
add dl,cl ;Add number of lines
dec dl
mov ah,07h ;Color : black on white
call clear ;Erase liberated lines
pop si ;CX and DX have already been
pop di sReturned
pop bx
pop ax
ret ;Back to caller

scrolldn endp

;== CLS: Clear the screen completely
;== Input : BP = number of the screen page (0 or 1)
;=— Output : none

;-- register : only FLIAGS are changed

cls proc near
mov ah,07h ;Color is white on black
xor bx,bx ;supper left is (0/0)
mov dx, 4F18h ;Lower right is (79/24)

;-- Execute Clear
cls endp

;—— CLEAR: fills a designated display area with space characters ------
7-— Input : AH = attribute/color

;- BL = line upper left

;- BH = column upper left

;- DL = line below right

;- DH = column below right

;== BP = number of the screen page (0 to 3)

;== Output : none

; :

-- register : only FLAGS are changed
clear proc near
cld ;0n string commands count up
push ex ;Store all register which are
push dx ;Changed on the stack
push si
push di
push es
sub dl,bl ;Calculate number of lines
inc 4l
sub dh,bh ;Calculate number of columns
inc dh
call calo ;Offset address of the upper left corner
mov cx,VIO SEG ;Segment address of the video RAM
mov es,cx ;To ES
xor ch,ch ;Hi bytes of the counter to 0

514

Abacus

104 The IBM Color Card

clearl:

clear2:

clear

;-— PRINT: outputs a string on the screen

;== Input : AH = attribute/color
- DI = offset address of the first character
;- SI = offset address of the strings to DS
;- BP = number of the screen page (0 to 3)
7—— Output : DI points behind the last character output
;-- register : AL, DI and FLAGS are changed
;-- Info : the string must be terminated by a NUL-character.
;- other control characters are not recognized
print proc near
cld ;0n string commands count up
push si ;Store SI, DX and ES on the stack
push es
push cx
push dx
mov dx,VIO_SEG ;Segment address of the video RAM
mov cl,wait ;Get WAIT flag
mov es,dx ;First to DX and then to ES
jmp short print3 :Get character and display it
printl label near
or cl,cl :Flicker suppressed?
jJe print2 7NO --> PRINT2
push ax ;Record characters and color
mov dx,3DAh ;Address of the display-status-register
hrl: in al,dx :Get content
test al,1l ;Horizontal retrace?
Jne hrl ;NO -=> wait
cli ;permit no further interrupts
hr2: in al,dx ;Get content
test al,l ;Horizontal retrace?
je hr2 ;YES -=> wait
POop ax ;Restore characters and color

mov al,* * ;Space character

canp wait,0 ;Flickering suppressed?
Je clearl sNO --> CLEAR]

push dx ;Store DX on the stack
waltret ;Retrace wait

setmode 00100101b ;Switch screen off

pop dx ;Return DX from the stack
mov si,di ;Record DI in SI

mov cl,dh sNumber columns in counter
rep stosw ;Store space character
mov di,si sReturn DI from SI

add di,160 ;Set in next line

dec dl ;All lines processed ?
jne clearl ;NO --> erase another line
cp wait,0 ;Flicker suppressed?

je clear2 ;NO --> CLEAR2

setmode 00101101b ;Enable screen

pop es ;Get registers from

pop di ;Stack again

pop si

pop dx

pop cx

ret ;Back to caller

endp

10. Accessing and Programming the Video Cards PC System Programming

sti ;Do not suppress Interrupts any more
print2: stosw ;Store attribute and color in V-RAM
print3: lodsb ;Get next character from the string
or al,al :Is it NUL
jne printl sNO --> output
printe: pop dx ;Get SI, DX, CX and ES from stack
pop cx
pop es
pop si
ret ;Back to caller
print endp
-- CALO: Converts line and column into offset address —----—--—-=========
-- Input : BL = line

BH = column
BP = number of the screen page (0 to 3)

~e Se Ne Ne Se Se

-- Output : DI = the offset address
-- register : DI and FLAGS are changed
calo proc near
push ax ;Secure AX on the stack
push bx ;Secure BX on the stack
shl bx,1 ;Column and line times 2
mov al,bh ;Column to AL
xor bh,bh ;Hi byte
mov di, [lines+bx] ;Get offset address of the line
xor ah,ah ;HI byte for column offset
add di,ax ;Add line and column offset
mov bx,bp ;Screen page to BX
mov cl,4 ;Multiply by 4,096
ror bx,cl
add di,bx ;Add beginning of screen page to offset
pop bx ;Restore BX from stack
pop ax ;Restore AX from stack
ret ;Back to caller
calo endp

;-- CGR: Erase the complete Graphic display
;—— Input : AL = OOH : erase all pixels
;- FFH : set all pixels

;=- Output : none

;-- register : AH, BX, CX, DI and FLAGS are changed

;—— Info : this Function erases the Graphic display in both
Hied Graphic modes

cgr proc near
push es ;Store ES on the stack
cbw ;Expand AL to AH
xor di,di ;O0ffset address in video RAM
mov bx,VIO SEG ;Segment address screen page
mov es,bx ;Segment address into segment register
mov cx,2000h ;0ne page is 8KB words
rep stosw ;Fill page
pop es ;sReturn ES from stack
ret ;Back to caller
cgr endp
;-— PIXLO: sets a pixel in the 320*200 pixel graphic mode —-----—-——-==—=====
;= Input : BP = number of the screen page (0 or 1)
s - BX = column (0 to 319)
PR DX = line (0 to 199)
el AL = color of the pixels (0 to 3)

516

Abacus

104

The IBM Color Card

’

2

Output
register

none

AX, DI and FLAGS are changed

pixlo proc near

push ax
push bx
push cx

mov
mov
and
shl
sub
mov
shl
not
shr
shr
Jmp

pixlo endp

Y R TIE IR IR Y

PIXHI: set
Input :

Qutput
register

pixhi proc

spix

push
push
push
mov
mov
and
sub
mov
shl
not
mov
shr

'

SPIX: sets
Input H

Output
register

proc

push
push
push

xor
mov
mov
mov
shr
mov
mul

cl,?
ah,bl
ah,1llb
ah,1
cl,ah
ah,11
ax,cl
ah
bx,1
bx,1
short spix

;Secure AX on the stack
;Note BX on the stack
;Store CX on the stack

;Transmit column to AH
;Column mod 4

;Column * 2

27 -2 * (column mod 4)
;Bit value

;Move to pixel position
;Reverse AH

;Divide BX by 4 by shifting
;Right twice

;Set pixel

s a pixel in the 640*200 pixel graphic mode ----—---—-—====——-
BP = number of the screen page (0 or 1)
BX = column (0 to 639)

DX = line (0 to 199)

AL = color of the pixels (0 or 1)

none

AX, DI and FLAGS are changed

near

ax
bx

cx

cl,?
ah,bl
ah,111b
cl,ah
ah,1
ax,cl
ah

cl,3
bx, cl

set pixel

;Store AX on the stack
;Note BX on the stack
;Note CX on the stack

;Transmit column to AH
;Column mod 8

;7 - column mod 8

;Bit value

;Move pixel position
sReverse AH

23 shifts

:Divide BX by 8

endp

a pixel in the graphic display

BX = column offset

DX = 1line (0 to 199)
AH = Value to cancel old Bits

AL = new Bit value
none

AX, DI and FLAGS are changed

hear

es
dx
ax

di,di
cx,VIO_SEG
es, cx
ax,dx

ax,1

cl,80

cl

;Secure ES on the stack
;Secure DX on the stack
;Secure AX on the stack

;Offset address in video RAM
;Segment address screen page

;Segment address into segment register

;Move line to AX
;Divide line by 2
;The factor is 90
sMultiply line by 80

517

10. Accessing and Programming the Video Cards

PC System Programming

518

spix
;== end

code

and dx,1 7Line mod 2

mov cl,3 ;3 shifts

ror dx,cl ;Rotate right (* 2000H)
mov di,ax ;80 * int(line/2)

add di,dx 7+ 2000H * (line mod 4)
add di,bx ;Add column offset

pop ax sReturn AX from stack
mov bl,es:[di] ;Get pixel

and bl,ah sErase Bits

or bl,al ;Add pixel

mov es:[di],bl ;write pixel back

pop dx ;Return DX from stack
pop es ;Return ES from stack
pop c©x sReturn CX from stack
pop bx ;Return BX from stack
pop ax ;Return AX from stack
ret ;Back to caller

endp

ends ;End of the code segment
end demo

Abacus 105 EGA and VGA Cards

10.5 EGA and VGA Cards

The EGA and VGA cards far exceed their predecessors in both graphics and in text
display capabilities. Other computers have had EGA and VGA capabilities for
some time (e.g., work stations, CAD/CAM applications), but these video cards are
now at prices where many home systems will soon have them.

The range of power of this new generation of video cards can be seen in their very
sharp resolutions and their ability to display almost any number of lines on the
screen. The EGA and VGA cards' greatest feature lies in their ability to emulate
other video cards.

These capabilities come with a price—more complicated hardware and
programming are required. One result of this is that the features of an EGA card or
a VGA card can no longer be realized with the traditional PC video controller (the
Motorola 6845). Instead, most EGA and VGA cards contain a VLSI chip developed
especially for use on an EGA card. At the heart of this component is a video
controller that controls the video signal generation. Its basic task is similar to that
of the 6845, but its registers differ from those of the 6845, both in number and
interaction between registers. Comparing the 6845 and VSLI is like comparing
BASIC and assembly language, where the increase of power is in proportion to the
degree of language complexity.

We recommend that you avoid programming the hardware registers directly unless
you absolutely must do so. Many tasks can be delegated to the BIOS without
wasting much time. Not only will this keep your program code more compact and
easier to read, it will greatly improve the compatibility of your code with other
video cards. Among the tasks which the various functions of the BIOS video
interrupt can perform are:

. Initialization of the video mode

. Selection of the display page

. Cursor positioning

. Defining the starting and ending line of the cursor

. Palette and border color selection

. Setting the size of the character matrix, and thereby the number of text
lines which can be displayed on the screen

. Loading user-defined character sets

. Reading configuration data

Detailed information about traditional BIOS video functions and the new functions
of the EGA/VGA BIOS can be found in Sections 7.4.

519

10. Accessing and Programming the Video Cards PC System Programming

If you need speed and maximum control over the screen, you should still perform
time-critical actions (e.g., manipulating video RAM) "by hand.”

EGA/VGA and text mode

There is no difference between the EGA and MDA or CGA card in text mode. The
video RAM and attribute byte are organized the same way for the EGA card as for
the other two cards—even the location of the video RAM is the same. But since an
EGA card can emulate either a CGA card or an MDA card, depending on the
monitor to which it is connected, you should first determine what kind monitor is
in use. From this the EGA can determine which of the two systems to emulate
(routines presented in Section 10.7 show how this is done). The type of card being
emulated determines where the video RAM can be found in memory, how the bits
of the character attribute byte are interpreted, and how many screen pages are
available.

Remember that the EGA or VGA card does not contain a 6845 CRTC, despite the
fact that it can perfectly emulate its video predecessors. This means that the status
and control registers of the MDA and CGA cards are unavailable. However, since
the settings that are normally made with these registers can also be performed with
the BIOS, we don't really need these registers. You should also remember that
there are no restrictions to accessing the video RAM of an EGA card or a VGA
card when it is in CGA emulation. It is unnecessary to synchronize screen access
with the activity of the CRTC by reading the status register.

The parallels between the organization of the video RAM in the CGA and MDA
cards also apply when the text mode is switched to 43 lines (which is impossible
in CGA emulation). As with any other number of displayed lines, this does not
change the basic structure of the video RAM at all. It is larger, but the formulas
for calculating the offset position of a character and its attribute byte within the
video RAM are still valid.

The VGA card is capable of 25, 43 and even 50 lines in text mode, depending on
the monitor in use.

These parallels also apply to the graphics modes already available to the CGA card.
The position of the video RAM and its structure are identical to the those of the
CGA card.

EGA/VGA and graphic modes

520

The EGA card offers the following new graphics modes:

. 320x200 pixels, 16 colors (BIOS code: ODH)
. 640x200 pixels, 16 colors (BIOS code: 0EH)
. 640x350 pixels, 2 colors (BIOS code: OFH)

Abacus

105 EGA and VGA Cards

. 640x350 pixels, 16 colors (BIOS code: 10H)
The VGA card offers the following graphic modes:

. 640x480 pixels, 2 colors (BIOS code: 11H)
. 640x480 pixels, 16 colors (BIOS code: 12H)
. 320x200 pixels, 256 colors (BIOS code: 13H)

Some EGA cards have even more modes with higher resolution or more colors,
but these modes are not part of the EGA standard and are supported by only a few
programs.

It is somewhat difficult to talk about a "standard”, because almost every
manufacturer has their own modes. Let's look at the lowest common
denominator—the modes which practically all EGA/VGA cards support. These are
the modes supported by the original EGA card, the IBM EGA.

These video modes, in which the video RAM can occupy more than 100K, show a
structure quite different from those used by the MDA, CGA and Hercules cards.
The maximum of 256K of RAM is divided into four bitplanes which are arranged
in a kind of a three-dimensional organization. From the processor's point of view
these bitplanes reside between segment addresses AOOOH and BOOOH.

Each bitplane contains one bit for each individual pixel. If you place the bitplanes
on top of each other, each pixel is represented by a total of four bits, which
together make up the color value of the pixel. Bitplane zero contains bit zero of
the color value of each pixel, bitplane one contains bit one, and so on. This limits
the number of displayable colors to 16, since four bits (or bitplanes) can represent
24, or 16 different numbers.

The color value obtained from combining individual bitplanes does not correspond
directly to a color. It is actually used as an index into one of the 16 palette
registers of the EGA card, each of which designates a particular color. Since the
EGA card can display a total of 64 different colors, the palette registers allow you
to select 16 of these colors to be displayed on the screen simultaneously. The
individual palette registers can be loaded with the help of the extended EGA BIOS
functions, as described in Section 7.4.

The structure of each bitplane corresponds to the organization of the pixels on the
screen, and parallels that of video RAM in text mode. Since each pixel occupies
one bit in the bitplane, eight consecutive pixels are combined into a byte. The
pixels on each line are placed left to right in successive memory locations. The
length of each line can be determined using the formula:

horizontal_resolution / 8

521

10. Accessing and Programming the Video Cards PC System Programming

522

Since the individual screen lines follow each other in sequence starting from the
top of the screen, the starting address of each line is obtained by multiplying the
line number by this value. The byte within this line which contains the desired
pixel is calculated by dividing the column number by eight (bits per byte). Adding
this to the starting address of the line gives us the following formula, which
calculates the offset address of the byte containing the coordinates (X, Y):

Y * (horizontal resolution / 8) + X / 8

X columns

- >
A000:0000 [OT7T7 2] A
A000:0000 [00:1; o]
A000:0000 [L011 =y
P e <3 .. s 'E‘ =}
4000:0000 [001 wls|=|® .
=2l 8lo Y lines
s(e])
° N
[w
] v
i
0100
0001
[1311
L
Video Display Monitor

Bitplane arrangement on EGA card

The bit number at which the pixel is located in this byte results from the
remainder of the division of the column number by eight:

7 = (column_number MOD 8)

These two formulas can be used to localize a pixel within a bitplane and
implement graphics primitives.

However, the bitplanes cannot be accessed individually because they all lie at the
identical segment address. The EGA card has four latch registers, each of which
contains a complete byte from one of the four bitplanes. When the CPU performs
a read access from the EGA video RAM at segment address AOOOH, one byte is
first read from each of the four bitplanes at the specified offset address and loaded
into the four latch registers. This applies to instructions which access memory

Abacus 105 EGA and VGA Cards

directly, such as MOV or LODS, as well as all instructions in which a byte from
the video RAM appears as an operand. This can be the case with arithmetic
instructions (ADD, SUB, OR, AND, etc.) and comparison instructions (CMP,
CMPS).

The process is similar for writing bytes to the video RAM. In this situation the
contents of the four latch registers are written back to the four bitplanes.

bits 01234567
s o ——

- aaaaae, o
CPU Ll..v..*‘*‘
read —

access LATCHES

BITPLANES =

Video RAM access—loading the four latch registers

bits 01234567

1+

—
CPU

Wriite MMM
access LATCHES

BITPLANES =

Video RAM access—writing the four latch registers

Since the latch registers are not directly accessible to the processor, we must
alternate conversion between eight and 32 bits when reading and writing the video
RAM. When reading, 32 bits from the latch registers must be compressed into one
byte, while the eight bits from the CPU when writing must be divided among the
32 bits of the latch registers. The nine graphic controller registers in the EGA card
perform this conversion.

523

10. Accessing and Programming the Video Cards PC System Programming

EGA graphic controller registers and their default values
Register] Meaning Default
00H Set / Reset 00H
01H Enable Set / Reset 00H
02H Color Compare 00H
03H Function Select 00H
04H Read Map Select 00H
05H Mode 00H
06H Miscellaneous varies
07H Color Don't Care OFH
08H Bit Mask FFH

Access to these registers is similar to CRTC register access on the Hercules
graphics card. Here too there is an address register at port address 3DEH, into
which we must first load the number of the register in the graphics controller that
we want to access. The value for this register can then be written to the data
register located at address 3CFH, immediately after the address register. These ports
do not have to be accessed separately: A 16-bit OUT instruction to the address
register performs the access in one move. The AX register, which will be sent to
this port, must contain the register number in the low-order byte (AL), and the
value for this register in the high-order byte (AH). Although values can be loaded
into the graphics controller registers in this manner, it is not possible to read data
from the EGA card.

The contents of register number five, the mode register, are responsible for the
behavior of the video RAM. This register controls the current read and write
modes and thereby the manner in which the data from the latch registers is
combined with the other registers in the graphics controller and the CPU data.

Write mode
Possible modes:
0,1 and 2

Read mode
Possible modes:
0 and 1

Mode register structure in EGA card graphics controller

There are a total of two different read modes and three write modes.

524

Abacus 105 EGA and VGA Cards

Read mode 0

Read mode O is the simpler of the two read modes. As usual, a read access in this
mode first loads the specified byte from the four bitplanes into the four latch
registers. Then the contents of the latch register specified by the lower two bits of
the read map select register (register four) are transferred to the CPU.

bits

234567
~ o[G100
1 10,1,0,0 e

cpu 2[00 10,0 Ot~y
read 3L 1.1,1,0,0,0.1

access) LATCHES

BITPLANES ip

POCOXXT OO]

Read Map
Select Register

Video RAM read access in read mode 0

The following sequence of assembly language instructions first sets read mode 0,
then writes the value 2 into the Read Map Select register, and finally reads a byte
from offset address 0003H in the video RAM. As a result, the AL register contains
the bit values for the pixels with coordinates (24, 0) to (31, 0) from bitplane 2.

mov dx, 3CEh ;sport address of the graphics cont. addr. reg.
mov ax, 0005h ;swrite read mode 0 in the mode register

out dx,ax

mov ax, 0204h swrite the value 2 (plane number) in the

out dx,ax ;sread map select register

mov ax, 0OAOOOh ;segment address of the video RAM

mov ds, ax ;to DS

mov si,0003h ;offset address into the video RAM

lodsb sread byte from plane 2

Read mode 1

Read mode 1 specifies which of the eight pixels in the specified byte of video
RAM is set to a certain color. This is determined by the individual bits in the read
byte which correspond to the one of the eight pixels from the specified byte in the
video RAM. If a pixel has the specified color (appropriate bit map), then the
corresponding bit will be 1, else 0. The bit pattern of the color to be compared
must be loaded into the lower four bits of the Color Compare register. The lower
four bits of the Color Don't Care register show which bitplanes will be taken into
consideration in the comparison. The value 1 includes the glvcn plane in the
comparison, while the value 0 excludes it.

525

10. Accessing and Programming the Video Cards PC System Programming

526

BITPLANES

Color don't care
register

Color Compare
Register

To CPU

)00} 110l0] -——-———'>

Video RAM read access in read mode 1

The following program sequence determines which of the pixels between
coordinates (0, 0) and (7, 0) have color value five. First, read mode 1 is set by the
Mode register. Then the color value to be tested (five) is loaded into the Color
Compare register. We must also load the Color Don't Care register with the value
1111b so that all four bitplanes will be included in the comparison. However, this
is the default value and we have not loaded any other value into this register, so we
can skip this step. After programming the registers of the graphics controller, we
load the segment and offset addresses of the pixels to be compared into the DS and
SIregisters. Then the read is executed from the video RAM.

Abacus 105 EGA and VGA Cards
mov dx,3CEh ;port address of the graphics cont. addr. reg.
mov ax,0805h ;write read mode 1 into the mode register
out dx,ax
mov ax,0502h swrite color value 15 into the
out dx,ax ;Color Compare register
mov ax, 0OAOOCh ;segment address of the video RAM
mov ds,ax sto DS
xor si,si 7load offset address O
lodsb sread and compare pixels,

;return result in AL

Write mode 0

Writing to the video RAM in write mode 0 results in a number of operations, all
of which depend on the contents of several registers. The contents of the Bit Mask
register determine whether the value of a bit in the four latch registers will be
written unchanged to the found bitplanes or whether it will first be modified. The
individual bits in the Bit Mask register correspond to the individual bits in the four
latch registers. If a bit in the Bit Mask register is 0, the corresponding bits in the
latch registers will be written to the bitplanes unchanged. If this bit is 1, a
modification will take place, dependent on the contents of the Function Select
register. As the following figure shows, the bits can be replaced or modified with
the logical operations AND, OR, and XOR.

Comparison modes
00b = Repiace

01b = AND comparison
10b = OR comparison
11b = XOR comparison

Function Select Register structure in EGA card graphics controller

The contents of the Enable Set/Reset register determines from where the other
operand in these operations will come. If the lower four bits contain the value 1,
the other operand will come from the lower four bits of the Set/Reset register.
Each of these bits is then combined with the bits from the latch registers as
described by the contents of the Function Select register. All of the bits to be
modified from latch register O will then be operated on with bit 0 of the Set/Reset
register. In the same manner, all of the bits to be modified from latch registers 1,
2, and 3 are combined with bits 1, 2, and 3 of the Set/Reset register, respectively.
The byte which is actually written to the graphics controller becomes irrelevant at
this point—the write access is reduced to a trigger, which cannot have any direct
influence on the contents of the latch register (and therefore the bitplanes).

527

10. Accessing and Programming the Video Cards

PC System Programming

528

Latch #0 Latch #1 Latch #2 Latch #3
[0] Wil ia i) 1) IIOIJ_(‘)_L_[) ITRIER
—— T TLILL)]
ik e [e{e N nE - {0 L0001 11 3 {0 G0 000111 =——timmen{ G il
il 1 |
Set/Reset. register T n#; (ir
T0-OR Canparison] I‘
XX 10K
Ruction
select
register
oanloliihni onnpbinl [oa1i1loloiior nnionnml
Byte in: Bitplane #0 Bitplane #1 Bitplane #2 Bitplane #3
Write access to video RAM (write mode 0) when Enable Set/Reset register
contains a value of 00001111(b)

The following assembly language fragment assigns the pixels at coordinates (5, 0)
and (7, 0), found at offset address 0000H in the video RAM, the color 1011(b).

Since we don't want to change the color of the other pixels, the contents of the
byte are first read into the latch register with a read access to the video RAM. It is
not important which read mode is active because the byte transmitted to the CPU
is irrelevant; all we are interested in is loading the latch register. Since only bits 0
(coordinates (7, 0)) and 2 (coordinates (5, 0)) will be changed, we load the value
00000101b (0Sh) into the bitmask register. In the Function Select register we
write the value 0 because we want to replace bits 0 and 2 with a new bit
combination. We write the color we want to give to the two bits (1011b = 0Bh) in
the Set/Reset register. We must also write the value 1111(b) (OFH) to the Enable
Set/Reset register of the graphics controller so that the color value will be taken
from the Set/Reset register. We can then execute the write access to video RAM.

mov ax, 0AOOOh ;segment address of the video RAM

mov ds,ax ;to DS

xor bx,bx ;load offset address 0

mov al, [bx] ;load byte 0 in the latch register

mov dx, 3CEh ;port address of the graphic cont., addr. reg.
mov ax,0005h ;read mode 0, write more 0

out dx,ax ;swrite in the mode register

mov al,03h swrite 0 in the Function Select register

out dx,ax

mov ax,0508h ;write bit mask in the bitmask register

out dx,ax

mov ax,0BOOh ;swrite new color value in the Set/Reset register
out dx,ax

mov ax,0F0lh swrite 1111b in the Enable Set/Reset register
out dx,ax

mov [bx],al strigger latch register

Things are different when the Enable Set/Reset register contains the value zero. In
this case all of the bits to be modified from the four latch registers are combined
with the CPU byte latch by latch. Here again the type of operation performed

Abacus

105 EGA and VGA Cards

depends on the contents of the Function Select register. For example, if the OR
operation is selected and bits 1, 2, 4, and 6 are to be modified, than these bits of
all four latch registers will be individually ORed with bits 1, 2, 4, and 6 in the
CPU byte.

Latch #0 Latch #1 Latch #2 Latch #3
o] [OIOATIIORE] OO0 [MTALED]

11 TTLITLLL
H —li (3] K o (031 H } Pt (1 10:040:

(5t
=1

[
TS0 ——

01
01=AND Caomparisor é&

XXXITI0RXIX]
Fuction
select
register
[aoiioK okl [l ol [nnnionnnl
Byte in: Bitplane #0 Bitplane #1 Bitplane #2 Bitplane #3

Write mode 1

Write mode 1 is quite simple compared to the complex operations of write mode 0.
The contents of the registers and the CPU byte are irrelevant because the contents
of the four latch registers are loaded unchanged into the specified offset address
within the four bitplanes. This is useful for copying the color values of eight
successive pixels to eight other pixels, for instance. The byte containing the eight
pixels can be read under one of the read modes, placing it in the latch registers.
Then a write access can be made to the byte in video RAM to which you want to
copy the color values. The graphics controller will automatically copy the contents
of the latch registers to the specified position within the four bitplanes.

To write these color values to other locations, you can use additional write
accesses. No more read accesses are necessary, since the latch registers already
contain the appropriate values and their contents are not changed by the write
access.

Write mode 2

Write mode 2 resembles a combination of the various modes of write mode 0. As
in write mode 0, the bitmask register determines which bits will be taken directly
from the latch registers and which will be modified. The manner in which these
bits are manipulated is again determined by the mode selected in the Function
Select register. The lower four bits of the CPU byte will be combined with the

529

10. Accessing and Programming the Video Cards PC System Programming

latch registers, independent of the Enable Set/Reset register. Bit zero of the CPU
byte is combined with all bits in latch register zero which are to be modified. The
same applies for CPU bits 1, 2, and 3, which are combined with the bits of latch
registers 1, 2, and 3, respectively.

Latch #0 Latch #1 Latch #2 Latch #3
LUOILITIT IO) IOILIOILIDORLE] TOHTIOIELIO) L0 |
L1 LELLL] |l |
{OCEOI0i0f0T 11 & e (e T — a1V 11 ¢ {0 HEE|
] I
ol 010 le
XIXIXI1 O]
Fuction
select
register
dinnonni ok jilil] Onnnonnnl i1 il
Byte in: Bitplane #0 Bitplane #1 Bitplane #2 Bitplane #3

Write access to video RAM in write mode 2

This mode is good for setting the colors of individual pixels, as we demonstrated
in the example in write mode 0. In contrast to write mode 0, the assembly-
language fragment is somewhat shorter because neither the Enable Set/Reset nor
the Set/Reset register has to be programmed. Here is the same example using write

mode 2:

mov ax, OA00Oh ;segment address of the video RAM

mov ds, ax +in Ds

xor bx,bx ;load offset address 0

mov al, [bx] ?load byte 0 in the latch registers

mov dx,3CEh ;port address of the graphics cont. addr. reg.
mov ax,0205h ;sread mode 0, write mode 2

out dx,ax ;write into the mode register

mov ax,0003h swrite REPIACE mode (0) in the Function

out dx,ax ;Select register

mov ax,0508h swrite the bit mask to the bitmask register
out dx,ax

mov al,OBh ;new color value in AL

mov [bx],al sand from there to the video RAM and

sinto the latch regs and bitplanes

Demonstration program

The following program demonstrates the following basic graphics routines:

. Calculating the position of a pixel within the video RAM
. Setting the color of a pixel

. Reading the color of a pixel

. Filling the entire video RAM with a color

530

Abacus

105 EGA and VGA Cards

If you have followed this section closely, especially the material on the read and
write modes, you won't have any problems following the logic of the various
functions. Since it contains detailed documentation, we won't say anything more
about it.

It should be noted that the program is intended for demonstration purposes only.
You can develop it further if you want to make a graphics library out of these
functions. For example, the function PIXPTR loads the segment address of the
video RAM into the ES register for calculating the position of a pixel within the
video RAM each time it is called. This can be eliminated by loading this address
into the register once at the beginning of the program and leaving it there, as long
as the other functions do not change this register.

The graphics controller register programming can also be improved. Here the
various registers are reloaded with the ROM-BIOS default values after the function
has completed. This can be eliminated as long as you do not use the BIOS
functions for character output (in the graphics mode) or the functions for setting
and testing points within the module or program. If you avoid these calls, then
these registers can be reset to their default values once at the end of the program
instead of at the end of each routine.

Assembler listing: VEGA.ASM

;tttﬁ*ttttii*ii********i**i****itit*tiiti*********itit*ttiti***********:

i * VEGA *3;
Hhd *s
i* Task : Creates elementary functions for accessing the *;
> graphic modes on an EGA/VGA card *;
. *e
; ;
i* Author : MICHAEL TISCHER *;
P Developed on : 10/3/1988 *;
i* Last update : 6/19/1989 *;
-k x e
; ;
FAd Assembly : MASM VEGA; *;
i * LINK VEGA; *;
;* *:
A Call : VEGA *;

A ALALLALAS LA S SR R SR it s e il it ittt sttt ittt st

~

;== Constants
VIO_SEG = O0A00Oh ;Segment address of video RAM
;in graphic mode
LINE_LEN = 80 ;Every graphi line in EGA/VGA graphic
;modes require 80 bytes
BITMASK REG = 8 ;Bitmask register
MODE_REG =95 ;Mode register
FUNCSEL_REG = 3 ;Function select register
MAPSEL REG = 4 ;Map-Select register
ENABLE_REG =1 ;Enable Set/Reset register
SETRES_REG = 0 ;Set /Reset register
GRAPH_CONT = 3CEh ;Port addressd of graphic controller
OP_MODE =0 ;Comparison operator mode:
; 00h = Replace
; 08h = AND comparison
; 10h = OR comparison
; 18h = EXCLUSIVE OR comparison
GR_640_350 = 10h ;BIOS code for 640x350-pixel

531

10. Accessing and Programming the Video Cards PC System Programming

716-color graphic mode

TX_80_25 = 03h ;BIOS code for 80*25-char.
;text mode

;== Stack

stack segment para stack ;Definition of stack segment
dw 256 dup (2?) ;256-word stack

stack ends ;End of stack segment

;== Data

data segment para ‘DATA‘ ;Definition of data segment

;== Data for the demo program

initm db 13,10

db “VEGA (c) 1988 by Michael Tischer"

db 13,10,13,10

db “This demonstration program operates only with an EGA/",13,10
db "card and a hi-res monitor. If your PC doesn't have this*,13,10
db "configuration, please press the <s> key to abort the",13,10
db "program.*,13,10

db “Press any other key to start the program.",13,10,"$"

data ends ;End of data segment
;== Code
code segment para 'CODE* ;Definition of code segment

assume cs:code, ds:data, es:data, ss:stack

;== Demo program

demo proc far
mov ax,data ;Get segment addr. from data segment
mov ds,ax ;and load into DS
mov es,ax ;and ES

;-- Display opening message and wait for input -——————=-———=---

mov ah,9 ;Function number for string display
mov dx,offset initm ;Message address
int 21h ;Call DOS interrupt
xor ah,ah ;Get function number for key
int 16h ;Call BIOS keybcard interrupt
cmp al,"s* ;Was <s> entered?
je ende ;YES --> End program
cmp al,“s" ;Was <S> entered?
jne startdemo ;NO ——> Start demo

ende: mov ax,4C00h ;Function no. for end program
int 21h ;Call DOS interrupt 21H

;== Initialize graphic mode
startdemo label near

mov ax,GR_640_350 ;Initialize 64x350-pixel
int 10h 716-color graphic mode

532

Abacus . 105 EGA and VGA Cards

mov ch,000100001b ;Color: Blue
mov ax, 350 ;Number of raster lines: 350
call fillscr ;Fill screen

;=- The program displays two squares on the screens (the -
;-- second is really a copy of the first) until the user -
H

-- presses a key to end the program -
xor ch,ch ;Set color to 0
di: mov ax, 100 . ;Starting line of first square
inc ch ;Increment color
and ch,15 ;AND bits 4 and 7
d2: mov bx, 245 ;Starting column of first square
d3: call setpix ;Set pixel
push cx ;Save color
call getpix ;Get pixel color
push ax ;Push coordinates onto stack
push bx
add bx,100 ;Compute position of second
add ax,100 ;square
call setpix ;Set pixel of copy
pop bx ;Return coordinates of first square
pop ax
pop c¢x ;Get color
inc bx ;Increment column
cnp bx, 295 ;Reached the last column?
jne d3 ;NO —-> Set next pixel
inc ax ;YES, Increment line
cmp ax, 150 ;Reached the last line?
jne d2 ;NO --> Work with next line
mov ah,1 ;Read keyboard
int 16h ;Call BIOS keyboard interrupt
je dl ;No key pressed ——> Continue
mov ax,TX 80 25 ;80x25 text mode
int 10h ;Initialization
jmp short ende ;End programm
demo endp

;== Functions used in the demo program

-- PIXPTR: Computes the address of a pixel within video RAM for the -
new EGA/VGA graphic modes

-- Input : AX = Graphic line

- BX = Graphic column

Output : ES:BX = Pointer to the byte in video RAM containing pixel

CL = Number of right shifts for the byte
- = Number of byte shifts in ES:BX needed to isolate
- the pixel

AH = Bitmask for combining with all other pixels
Registers: ES, AX, BX and CL are changed,

Ne %e % Ns Su Ne Se N Se S

pixptr proc near
push dx ;Push DX onto stack
mov cl,bl ;Save low byte of graphic column
mov dx,LINE_LEN ;Number of bytes per line to DX
mul dx ;AX = graphic line * LINE_LEN
shr bx,1 ;Shift graphic column three places to
shr bx,1 ;the right, divide by 8

533

10. Accessing and Programming the Video Cards PC System Programming

shr bx,1
add bx,ax ;Add line offset
mov ax,VIO_SEG ;Load segment address of video RAM
mov es,ax sinto ES
and cl,7 ;And bits 4 - 7 of graphic column
xor cl,7 ;Turn bits 0 - 3 then
;subtract 7 - CL
mov ah,1 ;After shift, bit 0 should be
1left alone
pop dx ;Pop DX off of stack
ret ;Back to caller

pixptr endp

—- SETPIX: Sets a graphic pixel in the new EGA/VGA graphic modes ------
-- Input : AX = graphic line

~

~

- BX = graphic column
- CH = pixel color
7—— Output : none
;-— Registers: ES, DX and CL are changed
setpix proc near
push ax ;Push coordinates onto
push bx sthe stack
call pixptr ;Computer pointer to the pixel
mov dx,GRAPH_CONT ;Load port addr. of graphic controller

;-- Set bit position in bitmask register

shl ah,cl ;Mask for bit to be changed
mov al,BITMASK REG ;Move bitmask register from AL
out dx,ax ;Write to register

;—- Set read mode 0 and write mode 2 --

mov ax,MODE_REG + (2 shl 8) ;Reg. no. and ,mode value

out dx,ax ;Write in the register
;-- Define comparison mode between preceding latch —======e---
;-- contents, and CPU byte @ =——ce—ee——e

mov ax,FUNCSEL REG + (OP_MODE shl 8) ;Write register number
out dx,ax ;and comparison operator

;=— Pixel control

mov al,es:[bx] ;Load latches

mov es: [bx],ch ;Move color into bitplanes

i-- Set altered registers to their default (BIOS) —-——=-=—==---
j-— status emeemeee———

mov ax,BITMASK REG + (OFFh shl 8) ;Set old bitmask

out dx,ax iWrite in the register

mov ax,MODE_REG ;Write old value for for mode register
out dx,ax ;into register

mov ah, FUNCSEL_REG ;Write old value for function select
out dx,ax ;register into register

534

Abacus

105 EGA and VGA Cards

pop bx ;Pop coordinates off of stack
pop ax H
ret ;Back to caller
setpix endp
;=— GETPIX: Places a pixel's color in one of the new EGA/VGA ——=——————=-
;- graphic modes
;=— Input : AX = graphic line
- BX = graphic column
;—- Output : CH = graphic pixel color
H

Registers: ES, DX , CX and DI are changed

getpix proc near
push ax ;Push coordinates onto
push bx ;the stack
call pixptr ;Computer pointer to pixel
mov ch,ah sMove bitmask to CH
shl ch,cl ;Shift bitmask by bit positions
mov di,bx sMove video RAM offset to DI
xor bl,bl ;Color value will be computed in BL
mov dx,GRAPH CONT :Load graphic controller port address
mov ax,MAPSEL REG + (3 shl 8) ;Access bitplane #3
7—— Go through each of the four bitplanes
gpl: out dx,ax ;Activate bitplane #AH only
mov bh,es:[dl] ;Get byte from the bitplane
and bh,ch ;Omit uninteresting bits
neg bh ;Bit 7 = 1, when a pixel is set
rol bx,1 ;Shift bit 7 from BH to Bit 1 in BL
dec ah ;Decrement bitplane number
Jjge gpl ;Not -1 yet? —-> next bitplane
;-— The map select register must not be reset, since -
7;—— the EGA- and VGA-BIOS default to a value of 0 -
mov ch,bl ;Get color from CH
pop bx ;Pop coordinates off
pop ax sof stack
ret ;Back to caller
getpix endp
;—— FILLSCR: Sets all screen pixels to one color
;= Input T AX = number of graphic lines on the screen
;— CH = pixel color
;—— Output t none
;

fillscr

pro

mov
mov
mov
out

mov
out

mov
mul

Xxor
mov

-- Reglsters: ES, AX, CX, DI, DX and BL are changed

C near
dx, GRAPH_CONT ;Load graphic controller port address
al,SETRES_REG ;Numbmer of Set-/Reset registers
ah,ch ;Move bit combination to AL
dx, ax ;Write to the register
ax,ENABLE_REG + (OFh shl 8) ;Write OFH in the
dx, ax ;Enable Set-/Reset register
bx, LINE_LEN / 2 ;Length of a graphic line / 2 into BX
bx ;Multiply by number of graphic lines
cXx, ax sMove to CX as repeat counter
di,di ;Address first byte in video RAM
ax,VIO_SEG ;Segment address of video RAM

535

10. Accessing and Programming the Video Cards PC System Programming

mov es,ax ;Load into ES

cld ;Increment on string instructions

rep stosw ;F111 video RAM

;== Return old contents of Enable Set-/Reset register —==--
mov dx,GRAPH CONT ;Load graphic controller port address
mov ax,ENABLE_REG ;Write OOH in Enable Set-/

out dx,ax ;Reset register

ret ;Back to caller

fillscr endp

;== End

code ends 7End of code segment
end demo ;Start program execution with DEMO

536

Abacus 10.6 Determining the Video Card Type

10.6 Determining the Type of Video Card

Whenever you want to access video card hardware or use a BIOS function which is
only available in special versions of the BIOS, you should first ensure that the card
in question is actually installed in the system. If your program doesn't make such a
test, then the result may not be what you wanted to appear on the screen.

It is especially important for an application program to recognize the type of video
card installed, if your program is supposed to work the same on all types of cards
while still directly accessing video hardware. The output routines need this
information to make optimum use of the special properties of the given card.

Remember that the PC can have both a monochrome video card (MDA, HGC or
EGA with a monochrome monitor) and a color video card (EGA, VGA, or CGA)
installed, although only one of the two cards may be active at one time.

Combinations allowable for PC video cards

VGA EGA HGC CGA MDA

VGA B B

EGA || [||
HGC [] || []

CGA [u [
MDA |] |

We need to find out what video cards are installed. There are no BIOS or DOS
functions for doing this, nor are there any variables we can read. We have to write
an assembly language routine which checks the existence of different video cards.
We can refer to the documentation for the various cards, since most manufacturers
include some procedure for determining if their card is in use. It is important to
keep the test specific (i.e., it does not return a positive result if a certain type of
video card is not installed). This presents problems for EGA and VGA cards, which
can emulate CGA or MDA cards with the appropriate monitor, and are difficult to
distinguish from true CGA or MDA cards.

All of the tests described here are found at the end of this section in the form of
two assembly language programs intended for use with C and Pascal programs.
The functions place the type of video card installed and the type of monitor
connected to it into an array to which the function is passed a pointer. If two video
cards are installed, their order in the array indicates which one is active.

The following cards can be detected by the assembly language routine:

. MDA cards
. CGA cards
. HGC cards

537

10. Accessing and Programming the Video Cards PC System Programming

. EGA cards
. VGA cards

Since the assembly language routine checks selectively for the existence of a
certain video card, there is a separate subroutine for each type of video card. It bears
the name of the video card for which it tests. These routines have names like
TEST_EGA, TEST_VGA, etc. The tests could be called sequentially, but certain
tests can be excluded if we know they would return a negative result. This is case
for the CGA test, for example, if an EGA or VGA card has already been detected
and is connected to a high-resolution color monitor. A CGA card cannot be
installed alongside such a card, so there is no point in testing for it.

There is a flag for each test which determines whether or not the test will be
performed. Before the first test, the VGA test, all of the flags are set to 1 so that
all of the tests will be performed in order. During the testing, certain flags can be
set to 0 for reasons mentioned above, and the corresponding tests will not be made.

VGA test

538

The tests begin with the VGA test. It is very easy because there is a special
function in the VGA BIOS, sub-function 00H of function 1AH, which returns
precisely the information that the assembly language routine needs. The
information is available only if a VGA card and hence a VGA BIOS is installed.
This is the case if the value 1AH is found in the AL register after the call. If the
test routine encounters a different value there, the VGA test will be terminated and
the other tests will be performed. This indicates that a VGA card is not installed.

After this function is called, the BL register contains a special device code for the
active video card and the BH register contains a code for the inactive card. The
following codes can occur:

Code Meaning

00H No video card

01lH MDA card/monochrome monitor

02H CGA card/color monitor

03H Reserved

04H EGA card/high-resolution monitor
05H EGA card/monochrome monitor

06H Reserved

07H VGA card/analog monochrome monitor
08H VGA card/analog color monitor

These codes are separated into values for the video card and the monitor connected
to it, and loaded into the array whose address is passed to the assembly language
routine. Since this routine already has information about both video cards, the
following tests do not have to be performed. The routine executes the monochrome
test, however, if the functions discover a monochrome card, since it cannot
distinguish between an MDA and HGC card.

Abacus 10.6 Determining the Video Card Type

EGA test

After the VGA test comes the EGA test, which it performed only if the VGA test
was unsuccessful, and thus the EGA flag was not cleared. It uses a function which
is found only in the EGA BIOS: sub-function 10H of function 12H. If no EGA
card is installed and this function is not available, the value 10H will still be found
in the BL register after the function call. In this case the EGA test ends.

If an EGA card is installed, the CL register will contain the settings of the DIP
switches on the EGA card after the call. These switches indicate what type of
monitor is connected. They are converted to the monitor codes the assembly
language routine uses and placed in the array along with the code for the EGA card.
The CGA or monochrome test flag is cleared depending on the type of monitor
connected. The EGA routine ends.

CGA test

If the CGA flag has not been cleared by the previous tests, the CGA test follows
the EGA test. As with the monochrome test, there are no special BIOS functions
which can be used and we have to check for the presence of the appropriate
hardware. In both routines this is done by calling the routine TEST_6845, which
tests to see if the 6845 video controller found on these cards is at the specified port
address. On a CGA card this is port address 3D4H, which is passed to the routine
TEST_6845.

The only way to test the existence of the CRTC at a given port address is to write
some value (other than 0) to one of the CRTC registers and then read it back
immediately. If the value read matches the value written, then the CRTC and thus
the video card are present. But before writing a value into a CRTC register, we
should stop to consider that these registers have a major impact on the
construction of the video signals and careless access to them can not only
thoroughly confuse the CRTC, it can even harm the monitor. Registers 0 to 9 are
out of the question for this test, leaving us with registers 10 to 15, all of which
have an effect on the screen contents. The best we can do is registers 10 and 11,
which control the starting and ending lines of the cursor.

The assembly language routine first reads the contents of register 10 before it loads
any value into this register. After a short pause so that the CRTC can react to the
output, the contents of this register are read back. Before the value read is compared
to the original value, the old value is first written back into the register so that the
test disturbs the screen as little as possible. If the comparison is positive, then a
CRTC is present and so is the video card (CGA in this case). The CGA routine
responds by loading the code for a color monitor into the array, since this is the
only type of monitor which can be used with a CGA card.

539

10. Accessing and Programming the Video Cards PC System Programming

Monochrome test

The last test is the monochrome test, which also checks for the existence of a
CRTC, this time at port address 3B4H. If it finds a CRTC there, then a
monochrome card is installed and we have to figure out if it is an MDA or HGC
hard. The status registers of the two cards, at port address 3BAH, are used to
determine this. While bit 7 of this register has no significance on the MDA card
and its value is thus undefined, it contains a 1 on an HGC card whenever the
clectron beam is returning across the screen. Since this is not permanent and
occurs only at intervals of about two milliseconds, the contents of this bit
constantly alternates between 0 and 1.

Hercules

The test routine first reads the contents of this register and masks out bits 0 to 6.
The resulting value is used in a maximum of 32768 loop passes, where the value
is read again and compared with the original value. If the value changes, meaning
that the state of bit 7 changes, then an HGC card is probably installed. If this bit
does not change over the course of 32768 loop passes, then an MDA card is in
use.

Here again we place the appropriate code for the video card in the array. The
monitor code is also set to monochrome, since this is the only monitor which can
be connected to an MDA or HGC card.

Primary and secondary video systems

540

The tests are now over. Now we have to figure out which card is active (primary)
and which is inactive (secondary). If the outcome of the VGA test was positive, we
can skip this because the VGA BIOS routine determines the active card
automatically.

In other cases we can determine the active video card from the current video mode,
which can be read with the help of function OFH of the BIOS video interrupt. If
the value seven is returned, then the 80x25 text mode of the monochrome card is
active. All of the other modes indicate that a CGA, EGA, or VGA card is active.
This information is used to exchange the order of the two entries in the array if it
does not match the actual situation.

The assembly language routine returns control to the calling program.

Here we include C and Pascal programs which call the function GetVIOS from the
assembly language module, and demonstrate how GetVIOS works.

Abacus - 10.6 Determining the Video Card Type

C listing: VIOSC.C

/*t*'fﬁfiifiit'*********iiii****iiiiiiiiiiiii*ii*ﬁ*********'iiiiiiii***/

/* vVIiosc */
/* */
/* Task : Determines the type of video card and monitor */
/* installed in the system. */
/* */
/* Author : MICHAEL TISCHER */
/* Developed on : 10/02/1988 */
/* Last update : 06/20/1988 */
/* */
/* (MICROSOFT C) */
/* Creation ¢ CL /AS /c VIOSC.C */
/* LINK VIOSC VIOSCA */
/* Call ¢ VIOSC */
/* */
/* (BORLAND TURBO C) */
/* Creation : Create project file made of the following: */
/* VIOsC */
/* VIOSCA.OBJ */
/* Info : Some cards may return errors or "unknown" */

/****i*i**i****iii'ti******iiit*t**t*t*t*t*tﬁtt"iiiittiiti*****'*'itii/

/*== Declarations of external functions */

extern void get_vios(struct vios *);

/*== Type defs %/
typedef unsigned char BYTE; /* Create a byte */
/*== Structures */
struct vios { /* Describes video card and attached monitor */

BYTE vcard,

monitor;

}:
/*== Constants */
/*-- Constants for the video card */

#define NO_VIOS /* No video card */

0
#define VGA 1 /* VGA card */
#define EGA 2 /* EGA card */
#define MDA 3 /* Monochrome Display Adapter */
#define HGC 4 /* Hercules Graphics Card */
#define CGA 5 /* Color Graphics Adapter */
/*-- Constants for monitor type */
#define NO_MON 0 /* No monitor */
#define MONO 1 /* Monochrome monitor */
#define COLOR 2 /* Color monitor */
#define EGA HIRES 3 /* High-res/multisync monitor */
#define ANLG_MONO 4 /* Analog monochrome monitor */
#define ANLG_COLOR 5 /* Analog color monitor */

/iiiii****'**i*t*ii**'*iiiii*'*iiii*i*iii***tﬁ'*iiiﬁ**i**iiii'iiiii*i*i/

/** MAIN PROGRAM >/

/titii*i*ti*i'ii**i*itiiii**tttii*iti*i*i*itiiit**i*i'iti*t'**ii*i*titi/
void main()

{

static char *vcnames[] = { /* Pointer to the video card name */

*VGA",
“EGA",

541

10. Accessing and Programming the Video Cards PC System Programming

“MDA*,
“HGC*",
“CGA"

b

static char *monnames[] = { /* Pointer to the monitor type's name */
“monochrome monitor®,
“color monitor",
“high-res/multisync monitor%,
"analog monochrome monitor",
“analog color monitor"

}:
struct vios vsys[2]; /* Vector for GET_VIOS */

get_vios(vsys); /* Determine video system */
printf (*\nvVIOSC (c) 1988 by Michael Tischer\n\n");
printf (“Primary Video System: %s card/ $s\n%,
venames [vsys [0] .vcard-1], monnames([vsys[0].monitor-1]);
if (vsys[l]).vcard != NO_VIOS) /* Is there secondary video system? */
printf ("Secondary Video System: %s card/ $s\n",
vcnames [vsys[1].vcard-1], monnames[vsys[1l].monitor-1]);

Assembler listing: VIOSCA.ASM

542

FRRRR AR R AR AR AR R R AR KRR AR AR KRR R AR AR AR AR AR RRR AR R IR R AR AR AR AR ARk kA A Ak o

i VIOSCA *7
it *;
o * Task : Creates a function for determining video *;
i adapter and monitor type, when linked with *;
i+ a C program. *;
it *;
i * Author : MICHAEL TISCHER *;
i* Developed on : 10/02/1988 *:
* Last update : 06/20/1989 *:
.x *e
’ ’
o Assembly : MASM VIOSCA; *;
i* ... link to a C program *;

’-******t*ﬁt*t*tiﬁit***ttt**ti*t*tiﬁii'k*ittﬁﬁ*ittt'tt******t**ttii*t'ttt;

;== Constants for VIOS structure

;Video card constants

NO_VIOs =0 ;No video card

VGA =1 sVGA card

EGA =2 ;EGA card

MDA =3 sMonochrome Display Adapter

HGC =4 ;Hercules Graphics Card

CGA =5 ;Color Graphics Adapter
;Monitor constants

NO_MON =0 ;No monitor

MONO =1 sMonochrome monitor

COLOR =2 ;Color monitor

EGA_HIRES = 3 ;High-resolution or multisync monitor

ANLG_MONO = 4 ;Analog monochrome monitor

ANLG COLOR = 5 ;Analog color monitor

;== Segment declarations for the C program/

IGROUP group _text ;Addition to program segment

DGROUP group const, bss, _data ;Addition to data segment
assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public *CONST';This segment includes all read-only
CONST ends ;constants

BSS segment word public 'BSS' ;This segment includes all

Abacus 10.6 Determining the Video Card Type

_BSS ends sun-initialized static variables
_DATA segment word public °‘DATA® ;Data segment
vios_tab equ this byte

;-- Conversion table for return values of function 1AH, ---
;=- sub-function OOH of the VGA-BIOS -—

db NO VIOS, NO MON ;No video card

db MDA » MONO ;MDA card and monochrome monitor
db CGA , COLOR ;CGA card and color monitor

db 2 . ? ;Code 3 unused

db EGA , EGA_HIRES ;EGA card and hi-res monitor

db EGA , MONO sEGA card and monochrome monitor
db ? . ? ;Code 6 unused

db VGA , ANLG_MONO ;VGA card and analog mono monitor
db VGA , ANLG_COLOR ;VGA card and analog color monitor

ega_dips equ this byte
;-- Conversion table for EGA card DIP switch settings —-------

db COLOR, EGA_HIRES, MONO
db COLOR, EGA_HIRES, MONO

_DATA ends

;== Program
_TEXT segment byte public 'CODE' ;Program segment

public _get_vios

-- GET_VIOS: Determines types of installed video cards --------=====---
-- Call from C : void get_vios(struct vios *vp);

-- Declaration : struct vios { BYTE vcard, monitor; };

-- Return value: none

-- Info This example uses function in SMALL memory model

Se Se Se Se we Ne
o 88 ee o

_get_vios proc near

sframe struc ;Stack access structure
cga_possi db 2 ;Local variable
ega possi db ? ;Local variable

mono_possi db ? ;Local variable

bptr dw ? ;Take BP

ret_adr dw ? ;Return address to caller

vp dw ? ;Pointer to first VIOS structure

sframe ends ;End of structure

frame equ [bp - cga_possi | ;Address elements of the structure
push bp ;Push BP onto stack
sub sp,3 ;Allocate space for local variables
mov bp,sp ;Transfer SP to BP
push di ;Push DI onto stack

mov frame.cga_possi,1 ;Could be CGA
mov frame.ega_possi,1 ;Could be EGA
mov frame.mono_possi,1;Could be MDA or HGC

mov di,frame.vp ;Get offset address of structure
mov word ptr [di],NO_VIOS ;Still no video
mov word ptr [di+2],NO VIOS ;system found

call test_vga ;Test for VGA card
cmp frame.ega_possi,0 ;EGA card still possible?
Je gvi1 ;NO --> Test for CGA

543

http:di,frame.vp

10. Accessing and Programming the Video Cards PC System Programming

call test_ega :Test for EGA card
gvl: cmp frame.cga_possi,0 ;CGA card still possible
je gv2 ;NO --> Test for MDA/HGC
call test_cga ;Test for CGA card
gv2: cmp- frame.mono_possi,0;MDA or HGC card still possibleh?
je gv3 ;NO --> End tests
call test_mono ;Test for MDA/HGC cards

;-- Determine active video card

gv3: cmp byte ptr [di],VGA ;VGA card active?
je gvi_end ;YES, active card already determined
cmp byte ptr [di+2],VGA ;VGA card as secondary system?
je gvi_end 7YES, active card already determined
mov ah,OFh ;Determine active video mode using the
int 10h ;BIOS video interrupt
and al,7 ;0nly modes 0-7 are of interest
cmp al,? ;Monochrome card active?
jne gv4 ;NO, in CGA or EGA mode
;-— MDA, HGC, or EGA card (mono) is active -—=—=--—eeeeeemeee—
cmp byte ptr [di+1],MONO ;Mona monitor in first structure?
je gvi_end ;YES, Sequence o.k.
jmp short switch ;NO, Change sequence

7=— CGA or EGA card currently active

gvé: cmp byte ptr [di+1],MONO ;Mono monitor in first structure?
jne gvi_end ;NO, Sequence o.k.

switch: mov ax, [di] ;Get contents of first structure
xchg ax, [di+2] ;Exchange with second structure

mov [di],ax

gvi_end: pop di ;Get DI from stack
add sp,3 ;Get local variables from stack
pop bp ;Get BP from stack
ret ;Return to C program

_get_vios endp

7
;

—-— TEST_VGA: Determines whether a VGA card is installed

test_vga proc near

mov ax,1la00h ;Function 1AH, sub-function OOH
int 10h ;calls VGA-BIOS

cmp al,lah :Is this function supported?
jne tvga_end 2NO --> End routine

;-- If function is supported, BH contains the active video --
7-- system code; BH contains the inactive video sys. code --

mov cx,bx sMove result to CX

xor bh,bh ;Set BH to 0

or ch,ch ;Just one video system?

Je tvga_l 2YES --> Convey first system's code

7-- Convert code of second system
mov bl,ch ;Move second systeﬁ code to BL

add bl,bl ;Add offset to table
mov ax,offset DGROUP:vios_tab[bx] ;Get code from table and

544

Abacus 10.6 Determining the Video Card Type

mov [di+2],ax splace in caller's structure
mov bl,cl ;Move first system's codes to BL

7—— Convert code of first system

tvga_1l: add bl,bl ;Add offset to table
mov ax,offset DGROUP:vios_tab[bx] ;Get code from table and
mov [di],ax :place in caller's structure

mov frame.cga possi,0 ;CGA test failed
mov frame.ega possi,0 ;EGA test failed
mov frame.mono possi,0 ;MONO still needs testing

mov bx,di ;Address of active structure
cmp byte ptr [bx],MDA ;Monochrome system available?
je do_tmono ;YES --> Execute MDA/HGC test
add bx,2 ;Address of inactive structure
cmp byte ptr {bx],MDA ;Monochrome system available?
jne tvga end ;NO --> End routine

do tmono: mov word ptr [bx],0 ;Pretend that this system
:is still unavailable
mov frame.mono_ possi,l;Execute monochrome test
tvga_end: ret :Back to caller

test_vga endp

H
;-- TEST_EGA: Determines whether an EGA card is installed

test_ega proc near

mov ah,12h sFunction 12H

mov bl,10h ;Sub~function 10H

int 10h ;Call EGA-BIOS

emp bl,10h ;Is the function supported?
je tega_end sNO -=> End routine

;=-- When this function is supported, CL contains the EGA --—
;=-- card's DIP switch settings -—

mov al,cl ;Move DIP switch settings to AL
shr al,1l ;Shift one position to the right
mov bx,offset DGROUP:ega_dips ;Offset address of table
xlat ;Move element AL from table to AL
mov ah,al ;Move monitor type to AH

mov al,EGA ;It's an EGA card

call found it ;sMove data to vector

cmp ah,MONO ;Connected to monochrome monitor?
Je is mono 2YES --> not MDA or HGC

mov frame.cga possi,0 ;Cannot be a CGA card
jmp short tega_end ;End routine

is mono: mov frame.mono possi,0;If EGA card is connected to a mono
smonitor, it can be installed as
;either an HGC or MDA

tega_end: ret ;Back to callerr

test_ega endp

;
7== TEST_CGA: Determines whether a CGA card is installed

test_cga proc near

545§

10. Accessing and Programming the Video Cards PC System Programming

mov dx,3D4h ;7CGA tests port addr. of CRTC addr.
call test_6845 ;reg., to see 1f 6845 1s installed
jc tega_end sNO -=> End test

mov al,CGA ;YES -=> CGA 1s installed

mov ah, COLOR ;CGA has color monitor attached
jmp found it ;Transfer data to vector

test_cga endp f

;
;

—-- TEST_MONO: Checks for the existence of an MDA or HGC card

test_mono proc near

mov dx,3B4dh ;Check port address of CRTC addr. reg.

call test_6845 ;with MONO to see if there's a 6845
sinstalled

je tega_end sNO --> End test

7-— I1f there is a monochrome video card installed, the —-----

;-- following determines whether it's an MDA or an HGC —-----

mov dl,0BAh ;Read MONO status port using 3BAH
in al,dx H

and al,80h ;Check bit 7 only and

mov ah,al ;move to AH

;-- If contents of bit 7 change during one of the following -
;-- readings, the card is handled as an HGC -

mov cx,8000h sMaximum of 32768 loop executionse
test_hge: in al,dx ;Read status port

and al,80h ;Check bit 7 only

cmp al,ah ;Contents changed?

jne 1is_hgc ;Bit 7 = 1 --> HGC

loop test_hgc ;Continue loop

mov al,MDA ;Bit 7 <> 1 --> MDA

jmp set_mono. :Set parameters
is hgc: mov al,HGC ;Bit 7 = 1 --> ist HGC
set_mono: mov ah,MONO ;MDA/HGC on mono monitor

Jmp found_it ;Set parameters

test_mono endp

’
’

-- TEST_6845: Sets carry flag 1f no 6845 exists in port address of DX

test_6845 proc near

mov al,OAh ;Register 10

out dx,al ;Register number of CRTC address reg.

inc dx ;DX now in CRTC data register

in al,dx ;Get contents of register 10

mov ah,al sand move to AH

mov al,4Fh ;Any value

out dx,al ;Write to register 10

mov cx,100 ;Short delay loop--gives 6845 time
wait: loop wait ;to react

in al,dx ;Read contents of register 10

xchg al,ah ;Exchange AH and AL

out dx,al ;Send old valuen

cmp ah, 4Fh ;Written value read?

546

Abacus 10.6 Determining the Video Card Type

je t6845_end ;YES --> End test

stc ;NO --> Set carry flag
t6845_end: ret sBack from caller
test_6845 endp
;
;-— FOUND_IT: Transfers video card type to AL and monitor type to --—---
;- AH in the video vector —-———=
found it proc near

mov bx,di ;Address of active structure

cmp word ptr [bx],0 ;Video system already onboard?

Je set_data ;NO --> Data in active structure

add bx,2 ;YES, Address of inactive structure
set_data: mov [bx],ax ;Place data in structure

ret ;Back to caller
found it endp
;
_text ends ;End of code segment

end ;End of program

Pascal listing: VIOSP.PAS

(tﬁi*ititttt*i*i*t*tittt*ttt*t*tiit*t*tit*tititt*tikit*t*ttttt*tti*ttti)
{* VIOSP *}
{* *}
{* Task : Returns the type of video card installed. *}
{* *}
{* Author ¢ MICHAEL TISCHER *}
{* Developed on : 10/02/1988 *}
{* Last update : 06/19/1989 *}
(t *)
{* Info : Some of the values given here may not coincide *}

with some video cards (e.g., some CGA cards
may return “Unknown card®).

{FERRRRRRRR AR AR AR AR AR AR R AR R AR AR AR AR AR R AR AR AR AR RRR AR AR AR Rk R AR AR AR AN]

program VIOSP;

{$L c:\masm\viospa}

const NO _VIOS =
VGA =

EGA =

MDA =

HGC =

CGA =
NO_MON =

MONO =
COLOR =

EGA HIRES =

ANLG MONO =
ANLG_COLOR =

type Vios = record
VCard,

{ Link assembler module

{ Change path to suit your DOS needs
{ No video card

{ VGA card

{ EGA card

{ Monochrome Display Adapter

{ Hercules Graphics Card

{ Color Graphics Adapter

{ No monitor

{ Monochrome monitor

{ Color monitor

{ High-resolution monitor

{ Monochrome analog monitor
{ Color analog monitor

{ Describes video card and attached monitor

Monitor : byte;

end;

——

—

547

10. Accessing and Programming the Video Cards PC System Programming

ViosPtr = *Vios; { Pointer to a VIOS structure }
procedure GetVios(vp : ViosPtr)} ; external ;

var VidSys : array[l..2] of Vios; (Array containing video structures }

{***t**tt***t**tt*ttt***tttt*itt**ttttttt********t*ttt******tt****t*tt*)

{* PrintSys: Gives information about a video system *}
{* Input : - VCARD: Code number of the video card *}
{* - MON : Code number of the attached monitor *}
{* Output : none *}

(**tt**tt*tt********t***t***t*i*tti*****t***tt***t**t***t****tﬁ*tti*t*t}

procedure PrintSys(VCard, Mon : byte };

begin

write(* *);

case VCard of
NO_VIOS : write('Unknown'); { For ®"other" code }
VGA : write(‘'VGA');
EGA : write('EGA');
MDA : write('MDA'});
CGA : write('CGA');
HGC : write('HGC');

end;

write(' card/ *);
case Mon of

NO MON : write('unknown monitor'); { For *“other" monitors }
MONO : writeln('monochrome monitor');
COLOR : writeln(‘color monitor');
EGA HIRES : writeln('high-resolution monitor');
ANIG_MONO : writeln('monochrome analog monitor');
ANIG_COLOR : writeln('color analog monitor');
end;
end;

(*****************t*tt**t**t*t********tt**tttt**tti**t****i**t*********]

{** MAIN PROGRAM **}
(t******t*****t*t**t*ttt**t****:**t**tt****tt*ttttt*t*t**t****t*ttt***t)

begin
GetVios (@vidsys); { Check installed video card }
writeln (*VIOSP - (c) 1988 by MICHAEL TISCHER');

write('Primary video system: ');
PrintSys(VidSys([l].VCard, VidSys([l].Monitor);

writeln (#13#10);
if vidSys([2].VCard <> NO_VIOS then { Second video system installed? }
begin { YES }

write('Secondary video system:');
PrintSys(VidSys(2].VCard, vidSys(2].Monitor };
writeln (#13410);
end;
end.

Assembler listing: VIOSPA.ASM

;*t*******t*t****i***t*******t***kttt**tt*tttt*t*t*****t*******t*tt*tt*;

i* VIOSPA *;
i* *;
Had Task : Creates a function for determining the type *
¥ of video card installed on a system. This *;
i* routine must be assembled into an OBJ file, *3
Had then linked to a Turbo Pascal (4.0) program. *a
.k *e
; ;
Hd Author : MICHAEL TISCHER *;
;> Developed on : 10/02/1988 *;
* Last update : 06/19/1989 *;
-k * e
; H
i* assembly : MASM VIOSPA; *;

548

http:writeln(.13.10

Abacus

10.6 Determining the Video Card Type

Hd ... Link to a Turbo Pascal program *;
Hd using the {$L VIOSPA} compller directive *;

’-**ttﬁ*i*tﬁﬁt*ﬁt**ﬁ**ﬁtitti*ﬁ*ﬁﬁﬁ****ﬁ**t*t*ﬁtiﬁﬁ*ﬁ*ﬁ**t*ﬁ*iiﬁti**ﬁ*t*ﬁ;

;== Constants for the VIOS structure

;Video card constants

NO_VIOS =0 ;No video card/unrecognized card
VGA =1 ;VGA card
EGA =2 ;EGA card
MDA =3 ;Monochrome Display Adapter
HGC =4 ;Hercules Graphics Card
CGA =5 ;Color Graphics Adapter
;Monitor constants
NO_MON =0 ;No monitor/unrecognized code
MONO =1 ;Monochrome monitor
COLOR =2 ;Color Monitor
EGA_HIRES = 3 sHigh-resolution/multisync monitor
ANLG MONO = 4 ;Monochrome analog monitor
ANLG COIOR = S ;Analog color monitor

;== Data segment
DATA segment word public ;Turbo data segment

DATA ends

;== Code segment
CODE segment byte public ;Turbo code segment

assume cs:CODE, ds:DATA
public getvios
;-- Initialized global variables must be placed in the code segment ----
vios_tab equ this word

;-- Conversion table for supplying return values of VGA -——
;-- BIOS function 1A(h), sub-function 00 (h) —-——

db NO_VIOS, NO_MON ;No video card

db MDA , MONO ;MDA card/monochrome monitor
db CGA , COLOR ;CGA card/color monitor

db ? , 2 ;Code 3 unused

db EGA , EGA_HIRES ;EGA card/hi-res monitor

db EGA , MONO ;EGA card/monochrome monitor
db 2 s 2 ;Code 6 unused

db VGA , ANLG_MONO ;VGA card/analog mono monitor
db VGA , ANLG_COLOR ;VGA card/analog color monitor

ega_dips equ this byte
;-- Conversion table for EGA card DIP switches —----

db COLOR, EGA_HIRES, MONO
db COLOR, EGA HIRES, MONO

-- GETVIOS: Determines type(s) of installed video card(s) --—-——-—--———-
-- Pascal call : GetVios (vp : ViosPtr); external;

-- Declaration : Type Vios = record VCard, Monitor: byte;

-- Return Value: None

Se Se v Na N

getvios proc near

sframe struc ;Stack access structure
cga_possi db ? ;local variables

549

10. Accessing and Programming the Video Cards PC System Programming

w

7local variables
;local variables

ega_possi db
mono_possi db

"~

bptr dw ? ;BPTR
ret_adr dw ? sReturn address of calling program
vp dd 2 ;Pointer to first VIOS structure
sframe ends ;End of structure
frame equ [bp - cga possi] ;Address elements of structure
push bp ;Push BP onto stack
sub sp, 3 ;Allocate memory for local variables
mov bp, sp ;Transfer SP to BP

mov frame.cga possi,l ;Is it a CGA?
mov frame.ega possi,1 ;Is it an EGA?
mov frame.mono_possi,1;Is it an MDA or HGC?

mov di,word ptr frame.vp :Get offset addr. of structure
mov word ptr [di],NO VIOS ;No video system or unknown
mov word ptr [di+2],NO_VIOS ;system found

call test_vga ;Test for VGA card
cmp frame.ega possi,0 ;Or is it an EGA card?
je gvl ;NO -->Go to CGA test
call test_ega ;Test for EGA card
gvl: cmp frame.cga possi,0 ;Or is it a CGA card?
Je gv2 ;NO --> Go to MDA/HGC test
call test_cga ;Test for CGA card
gv2: cmp frame.mono_possi,0;0r is it an MDA or HGC card?
je gv3 ;NO —-> End tests
call test_mono ;Test for MDA/HGC card

;—— Determine video configuration

gv3: canp byte ptr [di],VGA ;VGA card?
je gvi_end ;YES --> Active card already indicated
cmp byte ptr [di+2],VGA;VGA card part of secondary system?
je gvi end ;YES --> Active card already indicated
mov ah,OFh ;Determine video mode using BIOS video
int 10h sinterrupt
and al,7 ;Only modes 0-7 are of interest
canp al,?7 ;Mono card active?
jne gv4 ;NO --> CGA or EGA mode

;-— MDA, HGC or EGA card (mono) currently active ———-———————-

cnp byte ptr [di+l],MONO ;Mono monitor in first structure?
je gvi_end ;YES, Sequence o.k.
jmp short switch ;NO, Switch sequence

;=— CGA or EGA card currently active

gvd: cnp byte ptr [di+l],MONO ;Mono monitor in first structure?
jne gvi_end ;NO -->Sequence o.k.

switch: mov ax, [di] ;Get contents of first structure
xchg ax, [di+2] ;Switch with second structure
mov ([di],ax

gvi_end: add sp,3 ;Add local variables from stack
pop bp ;Pop BP off of stack
ret 4 ;Clear variables off of stack;

;Return to Turbo
getvios endp

550

http:frame.vp

10.6 Determining the Video Card Type

test_vga proc near

mov ax,1a00h ;Function 1A(h), sub-function 00 (h)
int 10h ;Call VGA-BIOS

cnp al,lah ;Function supported?

jne tvga_end ;NO --> End routine

;-- If function is supported, BL contains the code of the ---
;-- active video system, while BH contains the code of —-—
;-- the inactive video system -

mov cx,bx ;Move result in CX

xor bh,bh ;Set BH to 0

or ch,ch ;O0nly one video system?

Je tvga l ;YES --> Display first system's code

;-- Convert code of second system

mov bl,ch ;Move second system's code to BL
add bl,bl ;Add offset to table

mov ax,vios_tab[bx] ;Get code from table and move into
mov [di+2],ax ;caller's structure

mov bl,cl ;Move first system's code into BL

;-— Convert code of second system

tvga 1: add bl,bl ;Add offset to table
mov ax,vios_tab[bx] ;Get code from table
mov [di],ax ;and move into caller's structure

mov frame.cga_possi,0 ;CGA test fail?
mov frame.ega_possi,0 ;CGA test fail?
mov frame.mono_possi,0 ;Test for mono

mov bx,di ;Address of active structure
cnp byte ptr [bx],MDA ;Monochrome system online?

je do_tmono ;YES --> Execute MDA/HGC test
add bx, 2 ;Address of inactive structure
cmp byte ptr [bx],MDA ;Monochrome system online?
jne tvga_end ;NO --> End routine

do_tmono: mov word ptr [bx],0 ;Emulate if this system
;isn't available

mov frame.mono_possi,1;Execute monochrome test
tvga_end: ret ;Return to caller

test_vga endp

;
7-— TEST_EGA: Determine whether an EGA card is installed

test_ega proc near

mov ah,12h ;Function 12 (h)

mov bl,10h ;Sub~-function 10 (h)

int 10h ;Call EGA-BIOS

cmp bl,10h +Is this function supported?
je tega_end ;NO -=> End routine

;—- If the function IS supported, CL contains the —
;-— EGA card DIP switch settings -

mov bl,cl ;Move DIP switches to BL
shr bl,1 ;Shift one position to the right
xor bh,bh ;Index high byte to 0

5§51

10. Accessing and Programming the Video Cards

552

is_mono:

tega_end:

test_ega

mov ah,ega_dips[bx] iGet element from table

mov al,EGA ;Is it an EGA card?

call found it ;Transfer data to the vector
cnp ah,MONO ;Mono monitor connected?

je is_mono ;YES --> Not MDA or HGC

mov frame.cga possi,0 ;No CGA card possible
jmp short tega_end ;End routine

mov frame.mono_possi,0;EGA can either emulate MDA or HGC,
;1f mono monitor is attached

ret ;Back to caller

endp

7
b

test_cga

-- TEST_CGA: Determines whether a CGA card is installed

proc near

mov dx,3D4h ;Port addr. of CGA's CRTC addr. reg.
call test_6845 ;Test for installed 6845 CRTC

jc tega_end ;NO --> End test

mov al,CGA ;YES, CGA installed

mov ah,COLOR ;CGA uses color monitor

jmp found it ;Transfer data to vector

endp

i
;=— TEST_MONO: Checks for MDA or HGC card

test_mono

test_hgc:

is_hge:
set_mono:

test_mono

proc near

mov dx, 3B4h ;Port addr. of MONO's CRTC addr. reg.
call test_6845 ;Test for installed 6845 CRTC

jc tega end ;NO --> End test

;-— Monochrome video card installed @ = —————-

i

mov dl,0BAh ;MONO status port at 3BA(h)
in al,dx ;Read status port

and al,80h ;Separate bit 7 and

mov ah,al ;move to AH

;—— If the contents of bit 7 in the status port change ----
;—— during the following readings, it is handled as an -—-—-—-
;

— HGC ———
mov cx,8000h ;maximum 32768 loop executions
in al,dx ;Read status port
and al,80h ;Isolate bit 7
cmp al,ah ;Contents changed?

Jjne is hgc ;Bit 7 =1 --> HGC

loop test_hgc ;Continue

o

frov al,MDA ;Bit 7 < 1 --> MDA

Imp set_mono ;Set parameters

mov al,HGC ;Bit 7 = 1 ——> HGC

mov ah,MONO ;MDA and HGC set as mono screen
Jmp found it ;Set parameters

endp

;
;

-— TEST_6845: Returns set carry flag if 6845 doesn't lie in the

PC System Programming

Abacus

10.6 Determining the Video Card Type

-

test_6845

wait:

t6845_end:

test_6845

port address in DX

proc near
mov al,OAh
out dx,al
inc dx

in al,dx
mov ah,al
mov al,4Fh
out dx,al
mov cx,100
loop wait
in al,dx
xchg al,ah
out dx,al
cmp ah, 4Fh
Je t6845_end
stc

ret

endp

;Register 10
;Register number in CRTC address reg.
;DX now in CRTC data register

;Get contents of register 10
;and move to AH

;Any value
;Write to register 10

;Short wait loop to which
;6845 can react

;Read contents of register 10
;Exchange Ah and AL
;Send value

;Written value been read?
;YES --> End test

;NO --> Set carry flag

;Back to caller

~o S Se

—- FOUND_IT: Transfers type of video card to AL and type of -—

monitor in AH in the video vector ———

found it proc near
mov bx,di ;Address of active structure
cmp word ptr [bx],0 ;Video system already onboard?
Je set_data ;NO --> Data in active structure
add bx, 2 ;YES --> Address of inactive structure
set_data: mov [bx],ax ;Place data in structure
ret ;Back to caller
found it endp
;
code ends ;End of code segment
end ;End of program

553

10. Accessing and Programming the Video Cards PC System Programming

10.7 Accessing Video RAM from High Level Languages

The beginning of this chapter mentioned the option of vidleo RAM access from
high level languages. This would allow the developer to write screen output
routines for high level languages that would execute faster than output commands
available to the languages, BIOS functions, or DOS functions. This option would
be particularly attractive if it meant that we could write these routines without

assembly language programming.

The demonstration programs below implement direct video RAM access routines
which display a string on the screen. Althrough there are some major differences
between the three programs as a result of the differences between the respective
languages (BASIC, Pascal and C), all three programs contain the same elements.

Initialization

Output

Each program includes an initialization routine which determines the segment
address of the video RAM. The routine has a variable which contains the address of
the CRTC address register. There is a direct relationship between the video RAM
and this address register: just as this register is always at port address 3B4H, the
video RAM on a monochrome card is always found at segment address BOOOH.
This combination also applies to color cards, where the address register is at port
address 3D4H and the video RAM is at segment address B80OOH. If we know the
port address of the CRTC address register, we can determine the segment address of
the video RAM. Once we have determined this address, we can place it in a global
variable and execute the initialization routine.

All three programs have an output routine which uses the segment address we
determined above. Each time the routine displays something, it determines the
starting address of the video page currently displayed on the screen. This ensures
that the output appears on the visible screen, and not on an undisplayed video
page. We can find this from the CRT_START BIOS variable. This variable is
located at address 0040:004E, and specifies the offset address of the displayed video
page relative to the video page found at offset address 0000H.

After this address is determined, we can access the video RAM. The method used in
the program depends on the given programming language. Let's look at each
program in more detail.

The C implementation

554

From a programming point of view, this is the cleanest of the three
implementations because the video RAM can be treated as a normal variable in C.
We first define the structure VELB, which describes the ASCII/attribute pair as it
appears in the video RAM. We create a new data type, VP, to act as a pointer to
this structure. It is important that this pointer be of type FAR because these

Abacus

10.7 Accessing Video RAM from High Level Languages

structures are in the video RAM and therefore outside the C data segment. Smaller
memory models in C require the declaration of this pointer as a FAR pointer.

The global variable VPTR is initialized to be a pointer to the first ASCIl/attribute
pair in page 0 of the video RAM. This occurs in the INIT_DPRINT routine. It is
used within the DPRINT function (the function used for display) as the basis for
addressing the characters within the video RAM.

The DPRINT function loads the LPTR pointer with the address of the screen
output position passed to the routine. LPTR is first loaded with the contents of the
global variable VPTR, and then with the offset address of the active video page, as
found in the CRT_START BIOS variable. LPTR must be cast as a BYTE pointer
because the contents of the BIOS variable refers to bytes, and not to VELB
structures. If the cast operator were missing, the C compiler would generate code
which would first multiply the contents of the BIOS variable by the length of the
VELB structure before adding it, resulting in the wrong value.

We can now add the display position to this pointer. The output position is passed
to DPRINT as row and column coordinates. The video RAM is treated as an array
of 2000 components, each of which is a VELB structure. Since we have computed
the base address of the array in LPTR, all we need is to index into it. We multiply
the row coordinate by 80 (columns per line) and then add the column coordinate.
Finally we have a pointer to the output position in video RAM, which we can
treat like any other C pointer.

Each time through, the loop increments the pointer to the next VELB structure.
We write the ASCII code of the character and the color passed to DPRINT to the
specified address. This repeats until the program reaches the end of the string.

C listing: DVIC.C

SRR I AR A AR AR R AR AR AR AR AR AR R AR AR R R R AR R AR AR AR R AR AR AR AR AR AR AR AR AR R Rk h Rk kR /

/* DVIC */
/* */
/* Task : Demonstrates direct access to video RAM. */
/* */
/* Author : MICHAEL TISCHER */
/* Developed on : 10/01/1988 */
/* Last update : 06/21/1989 */
/* */
/* (MICROSOFT C) */
/* Creation : CL /AS DVIC.C */
/* Call : DVIC */
/* */
/* (BORLAND TURBO C) */
/* Creation : RUN menu command (no project file needed) */

JRERR AR R A R R AR AR AR AR R R AR R RN KA A AR R AR KA KRR RN KA AR AR KRR AR AR AR AN AR Rk kk /

/*== Include files */

#include <dos.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <bios.h>

555

10. Accessing and Programming the Video Cards PC System Programming

/*== Type definitions */
typedef unsigned char BYTE; /* Create a byte */
typedef struct velb far * VP; /* VP = FAR pointer in video RAM */
typedef BYTE BOOL; /* similar to BOOLEAN in Pascal */
/*== Structures */
struct velb { /* Describes a 2-byte position on the screen */
BYTE character, /* ASCII code */
attribute; /* Character attribute */

}:
/*== Macros */

/*-- MK FP creates a FAR pointer to an object from a segment
/*-- address and offset address

#lfndef MK FP /* MK_FP not defined yet? */
#define MK FP(seg, ofs) ((vold far *) ((unsigned long) (seg)<<16]| (ofs)))
#endif

#define COLOR(VG, HG) ((VG << 3) + HG)

/*== Constants */
#define TRUE 1 /* Constants for use with BOOL */
#define FALSE 0

/*-- The following constants return pointers to variables from the --—-*/
/*-- BIOS variable segment at segment address 0x40 -—*/

#define CRT _START ((unsigned far *) MK _FP (0x40, Ox4E})
#define ADDR 6845 ((unsigned far *) MK FP (0x40, 0x63))

#define NORMAL 0x07 /* Character attribute definition */
#define BRIGHT 0x0f /* Based on monochrome video card*/
#define INVERSE 0x70
#define UNDERSCORED 0x01
#define BLINKING 0x80
#define BLACK 0x00 /* Color attributes for color card */
#define BLUE 0x01
#define GREEN 0x02
#define COBALTBLUE 0x03
#define RED 0x04
#define VIOLET 0x05
#define BROWN 0x06
#define LIGHTGRAY 0x07
#define DARKGRAY 0x01
#define LIGHTBLUE 0x09

#define LIGHTGREEN O0xO0A
#define LIGHTCOBALT OxOB

#define LIGHTRED 0x0C
#define LIGHTVIOLET 0xO0D
#define YELLOW 0x0E
#define WHITE 0xOF
/*== Global variables */
VP vptr; /* Pointer to first character in video RAM */

/titittiittii*t*ttt*titi'k**iiiiﬁtﬁtﬁtiiiiitttttttttttttiiit*ﬁiiﬁttﬁi*iﬁi

* Function t:DPRINT *
ok *k

Task : Writes a string directly to video RAM

- LINES = Qutput row
- COLOR = Character attribute

* % * ¥ »

*
*
* Input parameters : - COLUMN = Output column
*
*

556

Abacus

10.7 Accessing Video RAM from High Level Languages

* - STRING = Pointer to string *

* Return value : None *
t'**t******t***ttt****t**i*tttt*tttﬁ*tt*ﬁttt**t***i*tﬁﬁtttf*t**tttt*ﬁ*t/

void dprint (BYTE column, BYTE lines, BYTE color, char * string)

{
register VP lptr; /* Floating pointer in video RAM */
register BYTE i; /* Points to number of characters */
/*—- Set pointer to output position in video RAM */
lptr = (VP) ((BYTE far *) vptr + *CRT_START) + lines * 80 + column;
for (i=0 ; *string ; ++lptr, ++i) /* Execute string */
{
lptr->character = * (string++); /: Character in video RAM */
lptr->attribute = color; /* Set character attribute */
} .
}
/tti*k**tt*tt*t*t***t**ttti*tt***t***t**t*tt*****ttt***t****t*ttttttt**t
* Function tINIT_DPRINT *
* % %k
* Task : Determines video RAM segment address for DPRINT *
* Input parameters : None : *
* Return value : None *
* 1Info : Allocates segment address of video RAM in VPTR *
* *

global variable

ttt*ﬁi*t*ﬁtt****t*i**titt*t*ﬁt**t*t**tt*i**t**ﬁt*tit*****iﬁiit*i*/
vold init_dprint ()

{
vptr = (VP) MK FP((*ADDR_6845 == 0x3B4) ? 0xBOOO : OxB800, 0);

/*tt*t**t*********tﬁt*iiﬁi*****tt*t*****i*t*******ﬁ*****ti&***t*****ik**

* Function :CLs *
'L 3 *k
* Task : Clears the screen with the help of DPRINT *
* *
* Input parameters : - COLOR = Character attribute *
* Return value : None *

ttt*tt***tittt*t**t*tit**t**t***i*tttt**t****tti****ttt**i******tttttit/
void cls(BYTE color)

{
static char blankline[8l1] =

| O R e I L

.
’ ’ ’ r ’ ’ ’ ’ ’ ’ ’ r ’ ’ ’
LI R R DU D UL I D D R R R U D DU I R Y DU R R R DU DR RN DR R R)
’ ’ , ’ ’ ’ r ’ ’ ’ ’ ’ ’ ’ ’
LI} . . L] L] L] LI) . . L] L] L] L] . L]
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ r
L] . L] L] L] L] L] L] . . . Ll L] . L] L] L] . L] L] L] . . . L] L] L] Ll .
’ ’ , r ’ ’ r ’ ’ ’ ’ ’ ’ ’ ’
LI D B R D R R U D I D U D DU R D R D TR DN D DN B DU D RN D BN B]
’ ’ ’ ’ ’ ’ ’ ’ r ’ r ’ ’ ’ ’
. l'I I,l l’l l’l l,l\ol
I
register BYTE i; /* Loop counter */
for (1=0; 1<24; ++1) /* Execute each line */
dprint (0, i, color, blankline); /* Display blank line */

}

SRR AR AR R AR AR A AR R AR R AR AR AR KRR AR A AR R AR R AR AR R AR R AR R AR AR AR AR A AR

* Function :NOKEY *
*k C'E 3
* Task : Tests for a keypress *
* Input parameters : None *
* Return value : TRUE if a key 1s pressed, otherwise FALSE *

titt*tiﬁ*i***i****ttt**t*'**ttitﬁt**t*i*t*t**ii*****t*t*tt*****t*t*it**/

557

10. Accessing and Programming the Video Cards PC System Programming

BOOL nokey ()

{

#ifdef _ TURBOC __ /* Compiling this with TURBO C2 */
return(bioskey(1) == 0); /* YES, read keyboard from BIOS */
#else /* Using Microsoft C */
return(_bios keybrd(_KEYBRD READY) == 0); /* Read from BIOS */
#endif

}

/*tt*i*tt*t**tttt*t*tt't*t*ﬁiiﬁttt*t**iittﬁ*iﬁkﬁtﬁti**i*ktttt***it*ttti/

/** MAIN PROGRAM *%/

/*ﬁi*ﬁ*'ﬁ*ﬁiﬁﬁiﬁﬁﬁitﬁﬁtitﬁkttitttitﬁtiﬁit'tt*tﬁit**ﬁﬁ*tiﬁ'ttﬁﬁtt*itﬁﬁﬁi/

void main()
{

BYTE firstcol, /* Color of first square on the screen */
color, /* Color of current square */
column, /* Current output position */
lines;

init_dprint (); /* Determine segment address of video RAM */

cls(COLOR (BLACK, GREEN)); /* Clear screen */

dprint (22, 0, WHITE, *DVIC - (c) 1988 by Michael Tischer“);

firstcol = BLACK ; /* Start with black */

while(nokey()) /* Repeat until the user presses a key */

{

if (++firstcol > WHITE) /* Reached last color? */
firstcol = BLUE; /* YES, continue with blue */
color = firstcol; /* Set first color on the screen */
/*-- Fill screen with squares */

for (column=0; column < 80; column += 4)
for (lines=1; lines < 24; lines += 2)
{
dprint (column, lines, color, "HEEER");/* Block characters can */
dprint (column, lines+l, color, “HMEEM");/* be created by press- */
color = ++color & 15; /* ing <ALt><2><1><9> */
}
}
}

The Pascal implementation

By using the keyword ABSOLUTE or by linking in a small assembly. language
routine it would also be possible to treat the video RAM as a normal variable in
Turbo Pascal. But there's an easier way.

Turbo Pascal offers the arrays MEMW and MEM for accessing memory which is
outside of the data segment of the Turbo Pascal program. The array MEM consists
of bytes and the array MEMW of words. The two arrays don't actually exist and are
just mapped to the address space, but that doesn't affect their usefulness.

We can write values into the array as well as read from it. This is done with the
following statement:

MEMW|[segment address : offset address] := expression

variable := MEMW|[segment address : offset address]

558

Abacus

10.7 Accessing Video RAM from High Level Languages

Pascal

The MEM array might be easier to use for this particular application since we will
be alternating between ASCII characters and a constant attribute. However, the
output procedure DPrint uses the MEMW array instead, because 16-bit accesses are
performed faster than two successive 8-bit accesses on 16-bit machines.

When accessing the MEMW array, DPrint takes the segment address of the video
RAM from the variable VSeg, which is initialized at the start of the program in
the procedure InitDPrint. As described before, this is done by examining the BIOS
variable which contains the port address of the CRTC address register. This and the
other BIOS variables are declared using the ABSOLUTE keyword, allowing them
to be used in the program like any other global variables.

The offset within the MEMW array is computed from the starting address of the
screen page. The coordinates are passed to DPrint, in which the row coordinate is
multiplied by 160 and the column coordinate by two. When running through the
string to be printed, the memory offset is incremented by two on each pass,
moving it one ASCII/attribute pair to the right.

listing: DVIP.P

{***t**t*ti****i***ititit**i**tittﬁtt**tt***t*****itt**tttii‘tt***t**it)
{* ‘ DVIP *}
{* *}
{* Task : Demonstrates direct access to video RAM from *}
{* Turbo Pascal *}
(t ‘}
{* Author : MICHAEL TISCHER *}
{* Developed on : 10/02/1987 *}
{* Last update : 06/20/1989 *}

{i*tti*tt***i*ti*tt*t*ttit****titt*tiii*ttttttttt***i*****t*tttttitttii)

program DVIP;

Uses Crt, Dos; { Use CRT and DOS units }
const NORMAL = $07; { Define character attributes in }
LIGHT = $0f; { conjunction with monochrome }
INVERSE = $70; { video card }
UNDERSCORED = $01;
BLINKING = $80;
BLACK = $00; { Color attributes for color card }
BLUE = $01;
GREEN = $02;
COBALTBLUE = $03;
RED = $04;
VIOLET = $05;
BROWN = $06;
LIGHTGRAY = $07;
DARKGRAY = $01;
LIGHTBLUE = $09;
LIGHTGREEN = $O0A;
LIGHTCOBALT = $0B;
LIGHTRED = $0C;
LIGHTVIOLET = $0D;
YELLOW = $OE;
WHITE = $OF;

type TextTyp = string[80];

var VSeg : word; { Segment address of video RAM }

559

10. Accessing and Programming the Video Cards PC System Programming

(t*ttfit*tt*t*ttttt**itﬁii'ii*itt'ii*ki'*iiﬁ**'t*tiii*ii'*ttt*t*iitt**')

{* InitDPrint: Determines segment address of video RAM for DPrint *}
{* Input : none *}
{* Output : none *}

‘i*iiikii*ii**tt'kt*it*'t*iiﬁt**tiﬁi*ti*tﬁ*itﬁ*ttt**tt*iittﬁ*ttttﬁ*t*t*‘

procedure InitDPrint;

var CRTC_PORT : word absolute $0040:0063; { Variable in BIOS var.seg. }

begin
1f CRTC_PORT = $3B4 then { Monochrome card connected? }
VSeqg := $B000 { YES, video RAM at B000:0000 }
else { NO, must be a color card }
VSeg := $BB00; { video RAM at B800:0000 }
end;
{titt*i'iiktﬁ*t*ﬁ*ﬁ**ttﬁ't'tﬁ***t*ﬁ****ﬁtt't"*'ttﬁ*tiﬁ*****'t't*ﬁtiﬁ*f)
{* DPrint: Writes a string direct into video RAM *}
{* Input : - COLUMN: Output column *}
{* v = LINES : Output line *}
{* - COLOR : Color (attribute) for individual characters *}
{* -~ STROUT: String to be displayed *}
{* Output : none *}

(ﬁ*itt*tt**ti't*tt**ﬁii&ttitt**ﬁ*ﬁittﬁttﬁﬁ*t&t*it**ti*ttktttt&tti*ﬁtt**}

procedure DPrint(Column, Lines, Color : byte; Strout : TextTyp);

var PAGE OFS : word absolute $0040:$004E; { Variable in BIOS var.seg. }
Offset : word; { Pointer to current output position }
1, 3 : byte; { Loop counter }
Attribute : word; { Attribute for output }
begin

Offset := Lines * 160 + Column * 2 + PAGE_OFS;
Attribute := Color shl 8; { High byte for word access to video RAM

}

i := length(Strout); { Determine string length }
for j:=1 to i do { Execute string }
begin { Put character & attribute directly into video RAM }

memw [VSeg:Offset] := Attribute or ord(StrOut[j]);
Offset := Offset + 2; { Set offset to next ASCII/attribute palr }
end;
end;

{tt**t'ttiti**tti**ﬁtt*'t*titﬁtiﬁtt**tittki*t*ﬁtitttt*titttkitttﬁﬁtt*it)

{* Demo: Demonstrates application of DPrint *}
{* Input : none *}
{* Output : none *}

(tttttitiﬁti*tﬁ*ttﬁ*it*'ttt*itii*ttttti*ttttttttttﬁ*ttittt***ﬁ*tt*ttit*}
procedure demo;
var Column, { Current output position

Lines,
Color : integer;

begin
TextBackGround (BLACK); { Turn background black }
Clrscr; { Clear screen }
DPrint (22, O, WHITE, 'DVIP - (c) 1988 by Michael Tischer'};
Randomize; { Enable random number generator }
while not KeyPressed do { Repeat untll user presses a key }
begin
Column := Random{ 76); { Select column, row and }

Lines := Random(22) + 1;
Color := Random(14) + 1;
DPrint (Column, Lines, Color, *'[[[[')}:{ Block character can be }

{ color at random }

560

Abacus

10.7 Accessing Video RAM from High Level Languages

DPrint (Column, Lines+l, Color, '[[[[');{ created by pressing }

end; {<ALL><2><1><9> }

ClrScr; { Clear screen }
end;

(t**t**i*tt****t***l*t*********t***t*t*t*t*t**t**t*t*t*t*t**tt*i*t*i***)

{** MAIN PROGRAM **}
(tttttttttttttttttttttttttttttttttttttt'ttttttt'ttttttttttttttt*ttt*tt*)

begin
InitDPrint; { Initialize output using DPrint }
Demo; { Demonstrate DPrint }
end.

The BASIC implementation

This version doesn't really fulfill its goal, since it is slower than the already slow
PRINT command. But we have included it for the sake of completeness, and
because it is a good example of how you can access the entire address space of the
8088 from within BASIC.

The commands DEF SEG, PEEK, and POKE are the heart of memory access in
BASIC. DEF SEG sets the segment address of the "current” 64K segment. PEEK
and POKE can then be used to read and write bytes from or to this segment. This
technique is used in the initialization routine at line number 50000, which first
defines the BIOS variable segment as the current segment. From there two PEEK
commands read the port address of the CRTC address register and the variable VR
is loaded with the segment address of the video RAM.

This address is used in the output routine at line number 51000 in combination
with the DEF SEG command, which defines the video RAM as the current
segment. But first we calculate the offset address in the video RAM by reading the
start address of the current screen page from the BIOS variable area and then adding
the offset address of the output position within the video RAM. As in the Pascal
version, this is calculated by adding the product of the row coordinate (variable
CLINE%) by 160 and the column coordinate (COLUMN%) by 2.

BASIC listing: DVIB.B

100 ' A AR KA R AR AR R AR RN AR R AR KRR R AN KRR AR R NN AR AR RARRRARR AR KA R AR AR R AR R A AR A AN

110 '+ DVIB *
120 LR) * 0
130 '* Task : Demonstrates direct access to video RAM x4
150 ** Author : MICHAEL TISCHER *
160 '* Developed on : 10/01/1988 *
170 '* Last update : 06/21/1989 *
180 TR AR R AR AR AR AR AR AR KRR AR RRAARR AR N R R AR AR AN AR R AN R AAR R A AN A AR AR AR AR AR R AR
190 °*

200 CLS : KEY OFF

210 GOSUB 50000 'Determine segment address of video RAM

220 COLUMN$=22 : CLINE%=0 : COL% = 15
230 T$ = "DIVB - (c) 1988 by MICHAEL TISCHER" : GOSUB 51000

240 FCOL% = 0 : T$ = “[[[[" '‘Define string and starting color
250 A$ = INKEY$:; IF A$<>"" THEN 400 ‘Repeat until user presses a key
260 FCOL$ = FCOL$ + 1 ‘Increment starting color
270 IF FCOL% > 15 THEN FCOL% = 1 'When FCOL%=16 make FCOL%=1
280 COL% = FCOL% 'Set color for first square
290 FOR COLUMN$=0 TO 76 STEP 4 ‘Execute for each column
300 FOR 2%=1 TO 24 STEP 2 ‘Execute for each line

561

10. Accessing and Programming the Video Cards PC System Programming

310 CLINES = 2% : GOSUB 51000 ‘Display first line of square
320 CLINES = 2%+1 : GOSUB 51000 '‘Display second line
330 COLS = COLS + 1 AND 15 ‘Set next color
340 NEXT

350 NEXT

360 GOTO 250

370 *

400 CLs ‘Clear screen
410 END

460 *

50000 AR AR R R R AR R AR AR AR AR AR AR R AR ARk A kA Ak kR kR kkkkk kR kkkkkhkhkh o
50010 ‘* Determine segment address of video RAM *
50020 ** *
50030 '* Input : none *
50040 *'* Output : VR is the segment address of video RAM *
50050 AR R R AR R R R AR R AR R R AR AR AR AR AR R AR AR A AR AR A AR R AR R AR AR AR AR A AR R AR AR RARD
50060 °*

50070 DEF SEG = &H40 ‘Segment address of BIOS variable range
50080 VR = PEEK(&H63) + PEEK(&H64) * 256 ‘Get CRTC port
50090 IF VR = gH3B4 THEN VR = &HBOOO ELSE VR = &HB800

50100 RETURN 'Back to caller
50120 °*

51000 TR AR AR AR AR AR R RN A A AR AR R AR AN R R AR R AR R AR AR RN A R A AN AN AN AT AR RN R AR AR
51010 '* Write string direct into video RAM *
51020 ** *
51030 *'* Input : - COLUMNS = the output column *
51040 ** - CLINES = the output line *
51050 ** - COLS = string color *
51060 ‘* - TS = the string to be displayed *
51070 ** Output : none *
51080 AR AR R AR AR R AR AR A AR R R AR AR AR R AR AR R A AN AR AR R AR AR AR R AR AR A AR R AR AR AR
51090 *

51100 DEF SEG = &H40 'Segment address of BIOS variable range
51110 OF% = PEEK(&H4E) + PEEK(&H4F) * 256 ‘Starting address of page
51120 OF% = OF% + COLUMNS * 2 + CLINES * 160 'Offset of first character
51130 DEF SEG = VR 'Set segment address of video RAM
51140 FOR Is=1 TO LEN(TS) ‘Execute string
51150 POKE OF%, ASC(MIDS$ (T$,I%,1)) 'ASCII code in video RAM
51160 POKE OF%+1, COLS% 'Color in video RAM
51170 OF% = OF% + 2 ‘Set offset to next character
51180 NEXT

51190 RETURN 'Back to caller
51200 °*

562

