
65

APPENDIX B

IBM PERSONAL COMPUTER
DATA ACQUISITION AND

CONTROL ADAPTER

66

This appendix contains the specifications of the

analog input and binary output devices. For other device

specifications,refer to IBM Personal Computer Data Acquisi-

tion and Control Adapter Programming Support. Also, this

appendix contains some information about the software and

hardware used in this thesis.

FORTRAN FUNCTION LIST

This section contains information on the following

functions:

AINM Analog Input Multiple

AINS Analog Input Simple

BITOUS Binary Bit Output Simple

BOUS Binary Output Simple

DELAY Delay Execution

67

Analog Input Device

The analog input device has the following characteristics:

Resolution

Input Channels

Input Ranges

Input Resistance

Input Capacitance

Input Leakage Current

Input Current

Digital Coding

Safe Input Voltage

Power Supply Rejection

Integral Linearity Error

12 bits

4 differential

Switch-selectable ranges:
0 to +10 volts (unipolar),
-5 to +5 volts (bipolar), and
-10 to +10 volts (bipolar).

100 megohms minimum

200 picofarads maximum; measured
at the distribution panel connector

+300 nanoamperes maximum

±4 milliamperes at maximum input
voltage

Unipolar: binary.
Bipolar: offset binary.

+30 volts maximum (power On or
Off)

+1/2 LSB maximum change full
scale calibration

+1 LSB maximum

68

69

Differential Linearity Error +1/2 LSB maximum

Differential Linearity Stability ±5 ppm/°C maximum;
guaranteed monotonic

Gain Error +0.1% maximum between
ranges. Any range adjustable
to zero.

Gain Stability ±32 ppm/°C of FSR
maximum

Common-Mode Input Range +11 volts maximum

Common-Mode Rejection 72 dB minimum ratio (signal
within common-mode range)

Unipolar Offset Error Adjustable to zero

Unipolar Offset Stability ±24 ppm/°C of FSR
maximum

Bipolar Offset Error Adjustable to zero

Bipolar Offset Stability ±24 ppm/°C of FSR
maximum

70

Settling Time For channel acquisition: 20
microseconds maximum to +0.1%
of the input value

Conversion Time 35 microseconds maximum

Throughput to Memory 15,000 conversions per second,
minimum

`A/D convert enable'

Input Impedance One LS TTL load plus 10- kilohm
pull-up resistor

`A/D convert out'

Fanout 10 LS TTL loads or 2 standard
TTL loads

Binary Output (BOO through B015)

Fanout 28 LS TTL loads or 7 standard
TTL loads

Throughput from Memory 25,000 operations per second,
minimum

`BO Gate'

Input Impedance

BO CTS

Input Impedance

`BO Strobe'

Fanout

Two LS TTL loads plus one
10- kilohm pull-up resistor

One LS TTL load plus
10- kilohm pull-up resistor

10 LS TTL loads or 2 standard
TTL loads

71

72

Programming with FORTRAN

The FORTRAN bindings are supplied as an object
module, DACF.OBJ and DACPF.OBJ. Include the
module in the object modules list that the linker
requires to make functions accessible to your
FORTRAN program.

Editing, Compiling, and Linking

You can create source code for programs in compiled
languages by using EDLIN or any other ASCII
editor. Call functions just like any other external
subroutine. You must observe the variable-
declaration, parameter-passing, and array
dimensioning conventions of the language.

After compiling the source code, link the resulting
object modules with the proper object modules and
libraries to form an executable (.EXE) file. Enter the
correct one in response to the linker's prompt:

DACF.OBJ

for FORTRAN Version 2.00 and

DACPF.OBJ

for Professional FORTRAN.

Once the DAC.COM is loaded, the .EXE files
execute in the normal way.

See the IBM Personal Computer FORTRAN
Compiler Version 2.00 or Professional FORTRAN
for more information on compiling and linking your
programs.

73

Arguments Are...

Every function requires at least one argument; most
require several. The argument list determines:

Which I/O device the function accesses

On which adapter it is located

Channel numbers

The number of samples to read or write

The variable or array that receives returning
input data or sends output data

The variable that receives the returning
execution status.

Most arguments take the form of either integer
variables or 2-byte unsigned integers. The language
you are using may place other constraints on values
or variables. These are explained in the "Remarks"
section for each argument.

74

Types of Arguments
Arguments appear in an argument list following each
function. Their purpose determines their place in the
list. Not all arguments appear in the argument list of
every function; however, the order of the arguments
never changes. This order, divided into the following
groups, is as follows:

Adapter, device, and channel numbers. These
tell the function which adapter to call. Further,
they identify the specific device within that
adapter, and the specific channel of that device,
if applicable.

Execution parameters. These supply additional
information on execution and data storage.

Count and rate. These tell iterative functions
how many iterations to perform and how fast to
perform them.

Data variable. This is the variable to which an
input function writes data, or from which an
output function retrieves data.

Note: In all languages other than C,
iterative I/O functions require the data
variable to be the first element of a data
array.

Status variable. This is the variable to which the
status of the function returns. It indicates the
success or type of failure of the function.

When assigning values to arguments (integer
arguments in particular), it is important to use the
correct data type. It is also important to stay within
the appropriate range. To assign a value greater than

75

32767, convert the unsigned integer value to the
signed integer required by BASIC and FORTRAN.
Lattice C programmers avoid this problem by using
type unsigned or type short integers for these
arguments.

Values greater than 32767, when assigned to integer
variables, generate an overflow condition during
execution. When returned to integer variables, they
usually come out in two's complement form (as
values in the range -32768 to -1.) This may affect the
way your program tests and uses them.

One way to avoid this is to specify values in
hexadecimal form, especially where the bitmasks
AND and XOR are concerned. (For more on AND
and XOR, see the function pages

Reading the Argument Pages
The following pages contain detailed descriptions of
each argument. In the examples, arbitrary alphabetic
labels represent the arguments. You may change them
in the code you write. Or, depending on the language
you use, you can name them in more or less the same
way. They are intended to clarify the purpose of each
argument and to indicate its position in the argument
list.

Arguments are position-specific. Be sure that
arguments for adapter, device, and channel are
consistent with the hardware you're accessing. Also
make sure that commas (or other recognized
delimiters) separate adjacent arguments.

76

Adapter Number

Label: adapt

Type: Integer value

Range: 0 to 3

Purpose: The adapter number indicates which of the
adapters that function accesses.

Remarks: A single Personal Computer can accommodate up
to four adapters. Switches on the card assign each
an adapter number of 0 to 3. If a value for this
argument lies outside this range (or is not assigned
to an adapter currently installed in the system), an
Unknown Adapter (128) error returns in the status
variable.

Related Arguments:

Device Number

77

Bit Number

Label: bit

Type: Integer value

Range: 0 to 15

Purpose: This argument specifies a binary input or output
bit to be tested, set, or cleared by the function.

Remarks: You must assign an integer of value 15 to 0 to this
argument. Bit 15 is the most significant bit, and 0
is the least significant. Other values return an
Unknown Bit Value (137) error in the status
variable.

78

Channel Low

Label: chanlo

Type: Integer value

Range: 0 to 255

Purpose: This argument selects the channel that the input or
output function accesses. In a scanning input
function, it specifies the lowest numbered channel
included in the scan.

Remarks: Functions accessing a single channel require only a
single channel argument. By convention that
argument is chanlo.

The wide range for this argument provides
maximum room for the expansion bus interface. In
practice, the accessed device determines the
argument's effective range. The allowable values
for the on-board devices are:

Device Name Device # Channel Range

Analog Input 9 0 to 3

Analog Output 9 0 to 1

Binary I/O 8 Not Applicable

Counter 10 0

For an expansion device, the range of values for this
argument depends on the number of channels the
device supports. If the value you use is outside the
valid channel range for the device, the actual channel
selected is determined by the value of chanlo modulo
the number of channels supported by the device. If
chanlo is less than 0 or greater than 255, an Invalid
Channel Range (134) error returns in the status
variable.

Related Arguments:

Channel High

79

Count

Label: count

Type: Long integer (or real) value

Range: 0 to 16 000 000

Purpose: This determines the number of times an iterative
(multiple) function is performed. It also determines
the time value of the DELAY function.

Remarks: The value for this argument must not exceed the
amount of storage allocated for the target array of
the function. It also must not exceed the amount
of data in the source array. This is especially true
when the function performs a scanning input.
These involve count scans, each of which may
generate several values.

In Compiled BASIC and Interpreted BASICA, this
argument must be a real variable with an integer
value in the specified range. Any fractional
component is ignored. In C, this argument must be
either a variable of type long int, or an expression
that evaluates to type long int. In FORTRAN, this
argument must be either a variable of type
INTEGER*4 or an expression that evaluates to
type INTEGER*4.

If count is 0, the function is called but not
performed. If count is less than 0 or greater than
16 000 000, an Invalid Count Range (135) error
returns in the status variable.

Related Arguments:

Data Variable.

80

Data Variable

Label: data

Type: Integer variable (integer array)

Range: -32768 to 32767

Purpose: This argument references a variable or array
element to which a function will write data.

Remarks: If the function is simple (non-iterative), the
variable must be an integer variable. If it is
a multiple (iterative), or scanning function,
the variable must be the first element of an
integer array.

The on-board analog input and output devices
have a resolution of 12 bits in the range 0 to
4095. Analog output data outside this range is
interpreted modulo 4096.

The on-board binary and counter timer devices
have a resolution of 16 bits; they return data in
the range -32768 to 32767. The most significant
bit is 15, and the least significant is 0.

81

Device Number

Label: device

Type: Integer value

Range: 0 to 255

Purpose: This argument determines which I/O device the
function accesses. Every I/O device has a unique
device number. Each adapter includes the
following on-board devices:

Device # Device

8 Binary I/O device
9 Analog I/O device
10 Counter device

Remarks: As noted above, values for this argument must fall
in the range of 8 to 10. Values from 0 to 7 and
from 12 to 255 access devices installed through the
expansion bus interface. If a value outside this
range appears in this argument, an Unknown
Device (131) error returns in the status variable.

The device number chosen must correspond to
either an adapter installed in the computer or an
expansion device. Attempts to access a device that
does not exist, or to access a device with an
inappropriate function call, can return erroneous
values or a Device Timeout (138) error.

Related Arguments:

Adapter Number

Mode

82

Label: mode

Type: Integer value

Range: 0 or 128

Purpose: This argument determines if system interrupts are
enabled or disabled during the processing of
multiple I/O functions.

Remarks: This argument applies only to the AINM, AOUM,
BINM, BOUM, and CINM multiple I/O functions.
Zero is the only allowed value for other functions.

If mode is 0, normal system interrupt processing
continues during the processing of the multiple I/O
functions. If mode is 128, the device driver inhibits
system interrupts to increase I/O performance.

For values other than 0 and 128, an Unknown
Mode (133) error returns in the status variable.

Related Arguments:

Rate.

83

Rate

Label: rate

Type: Long integer (or real) value

Range: 0 to 1 000 000

Purpose: This specifies the rate, in samples-per-second, at
which the function executes.

Remarks: If this value is 0, an external clock signal on the
IRQ line determines the sampling rate. Also, at 0,
the function does not execute until the IRQ line
goes from high to low.

If you enter a value greater than either the
function or the current device supports, then
iterations occur at the maximum rate. A Timer
Overrun (1) error or Excessive Timer Overrun
(142) error returns in the status variable.
In Compiled BASIC and Interpreted BASICA
programs, this argument must be a real variable
containing an integer in the specified range.
Decimal components are ignored. In C programs,
this argument must be either a variable of type
long int or an expression that evaluates to type
long int. In FORTRAN programs, this argument
must be either a variable of type INTEGER*4 or
an expression that evaluates to type INTEGER*4.

If rate is less than 0 or greater than 1 000 000, an
Invalid Rate Range (139) error returns to the status
variable.

Related Arguments:

Count, Mode

84

Status Variable

Label: stat

Type: integer

Range: -32768 to 32767

Purpose: This argument references the integer variable to
which the function's status code returns.

Remarks: A non-zero return indicates a general execution
failure of the function.

85

Storage Operation

Label: stor

Type: Integer value

Range: 0

Purpose: This argument is reserved.

Remarks: Zero is the only allowed value. For values other than
zero, an Unknown Storage Operation (132) error
returns in the status variable.

86

Analog Input Multiple
AINM

Purpose: AINM samples analog values from the specified
adapter, device, and channel.

Format: CALL AINM (adapt, device, chanlo, ctrl, mode,
stor, count, rate, data, stat)

adapt Adapter number accessed

device Device number accessed

chanlo Channel accessed

ctrl Expansion device control

mode Execution mode

stor Must be 0

count Number of times the function executes

rate Execution rate, in samples-per-second

data First element of the array that receives
returning data

stat Variable that receives the returning
execution status.

87

Analog Input Simple
AINS

Purpose: AINS selects a single analog value from the
adapter, device, and channel and stores it in the
data variable.

Format: CALL AINS (adapt, device, chanlo, ctrl, data,
stat)

adapt Adapter number accessed

device Device number accessed

chanlo Channel accessed

ctrl Expansion device control

data Variable that receives the returning data

stat Variable that receives the returning
execution status.

88

Binary BIT Output Simple

BITOUS

Purpose: BITOUS sets the state of a bit in the binary output
word of the adapter and device. The bit takes the
value of the data variable.

Format: CALL BITOUS (adapt, device, bit, data, stat)

adapt Adapter number accessed

device Device number accessed

bit The bit number (15 to 0) for output

data Variable from which the bit value is

retrieved (must be 1 or 0)

stat Variable that receives the returning
execution status.

Remarks: When the function is finished, execution status
returns to the status variable.

BITOUS neither reads nor affects handshaking
lines on the binary input port. The function acts
on only the bit specified. It numbers bits from 15
to 0, beginning with the most significant. The
single exception to this rule occurs when BITOUS
is the first binary output function executed after
system initialization. In that case, BITOUS sets or
clears the specified bit and zeroes all other bits.

89

Binary Output Simple
BOUS

Purpose: BOUS outputs the contents of the data variable as
a 16-bit binary word.

Format: CALL BOUS (adapt, device, hndshk, data, stat)

adapt Adapter number accessed

device Device number accessed

hndshk Handshake (must be 0)

data Variable from which data is retrieved

stat Variable that receives the returning
execution status.

Remarks: BOUS operates through the adapter and device.
When the function is finished, execution status
returns to the status variable. The most significant
bit is 15 and the least significant bit is 0.

A data value of 9 (binary word 0000 0000 0000
1001) sets bits 0 and 3 of the binary output word.
This latched value remains in effect until changed
by another binary output function.

90

Delay Execution
DELAY

Purpose: DELAY interrupts program execution.

Format: CALL DELAY (adapt, count, stat)

adapt Adapter number accessed

count Length of delay (milliseconds)

stat Variable that receives the returning
execution status.

Remarks: DELAY allows you to perform timed sampling at
intervals longer than one second allowed by
iterative I/O functions. Software overhead must be
taken into account. The time required to execute a
DELAY function and a subsequent I/O function
increases the length of delay by several to several
hundred milliseconds.

When the function is finished, execution status
returns to the status variable.

Major Components

Following is a block diagram of the Data Acquisition Adapter.

Data Bus

Buffer

Control
Circuitry

CAROSEL
Address

Decode

INTCLR

Interrupt
Ci cuitry

Data Bus

Conversion
Ci cuitry

IRO

A/D INT

TIMER INT

COUNT
INT

OSC 14 MHz

1-4

3

Binary
I/O
Device

m

3
0
3

C

81041115

800 -8015

Hand-
shaking

0/A0

D/A 1
Analog
I/O
Device

Divide
by 14

8253 -5
Timer/
Counter
Device

A/D
0.3

RATE

DELAY
COUNT

IN

COUNT
OUT

cr

0

91

92

Analog I/O Device

The Data Acquisition Adapter's analog I/O device consists of two
subsystems:

Analog input: An analog-to-digital conversion subsystem.

Analog output: A digital-to-analog conversion subsystem.

Analog Input Subsystem

On the following page is a block diagram of the analog input
subsystem.

Analog-to-digital conversion is the process of converting analog
signals (voltages) over a given range to digital values.

Unlike digital (binary) signals, which have only two voltage
states, analog signals have infinite voltage levels over a particular
range.

Analog-to-digital converters (ADCs) are categorized by the
number of bits of resolution they allow. The greater the number
of bits, the greater the number of discrete voltage levels that can
be represented.

The Data Acquisition Adapter has an analog input device with the
following features:

Four, multiplexed, differential channels

An ADC with 12-bit resolution

Switch-selectable ranges

Optional data-conversion control with 'A/D convert out' and
`A/D convert enable in' lines.

WDO
WD1
WD2

BUFEREAD,

Analog
Device

Control
Decode

A/D 04
to

A/D 3± A07502
Channel

"."-*/ Analog
Multiolexe

A/D CE

cr

2

0

3
0
2

0

2----k

AD583
Sample

and
old

AD574AK
12Bit
ADC

Busy

READ/
CONV

Al
Data
Reg ster

RD A/D VALUE

LAM
BUSY/
INT
Control
Circuitry

A/0 CO

A/D BUSY State

A/D INT State

...RD A/D STATUS

A/D INT

AI
Status
Register

A/D Channel Select

1 .r-

Al
Control
Register CONVERT START

EOCINT ENABLE

A/D CONTI

Analog input subsystem

93

94

The Data Acquisition Adapter's analog input device (device
number 9) has four channels, which are multiplexed into a single
ADC. This device converts analog signals in one of three ranges
to digital values in the range of 0 to 4095.

The three switch-selectable ranges are:

- 5 to +5 volts

-10 to +10 volts

0 to +10 volts

The relationship of the analog input voltage to the returned digital
value depends on the range for which the hardware is configured.
The selected range setting for analog input is in effect for all
analog input channels. For example, in the -5 to +5 volt
configuration, an input of +4.997 volts generates a full-scale
value of 4095; an input of 0 volts generates a value of 2048; and
an input of -5 volts generates a value of 0.

Analog Input Device Control

The use of the ASS strobe causes the analog input device to be
accessed as device number 9.

The control decode circuitry of the analog device decodes WDO
through WD2, Ticg, and BUFFREAD to generate the following
control signals:

WR A/D CONT Write analog-to-digital control.
Allows the AI control register to be
written to.

RD A/D STATUS Read analog-to-digital status. Allows
reading of the AI status register.

RD A/D VALUE Read analog-to-digital value. Allows
reading of the AI data register.

Analog Input Device Registers

AI Control Register

AI Status Register

AI Data Register

The AI control register contains the
analog-to-digital channel selection,
analog-to-digital interrupt-enable
information, and convert start bit
information. The Al control register is
cleared by BUFFRES during
power-on- reset.

The AI status register contains
information about 'AID busy,' the
`A/D interrupt status,' and the
readback of the 'A/D interrupt enable.'

The 16-bit AI data register contains
the data from the ADC. Because the
output of the ADC is a 12-bit digital
value, the four highest bits of the
register are grounded.

95

96

Starting an Analog-to-Digital Conversion

The convert start bit from the Al control register is logically
ANDed with the external 'A/D convert enable' signal from the
distribution panel connector. The result is inverted to generate an
active low signal, which is brought to the READ/CU/NW pin of

the AD574 ADC.

Reading an Analog-to-Digital Value

The READ /CONY pin must be taken high before the
analog-to-digital value can be read. This is accomplished by
writing a convert start bit equal to 0 to the Al control register.

Channel Selection

The differential analog to digital channel pair is selected by the
AD7502 4-channel, analog multiplexer on the basis of the
analog-to-digital channel-select bits of the AI control register.

Sample and Hold

During a conversion, the 'busy' signal from the AD574A ADC
causes the AD583 Sample and Hold to hold its present value
when the 'busy' signal is high, and starts sampling again when it is

low.

`A/D Busy' and Interrupt States

At the end of a conversion, the AD574 ADC's 'busy' signal goes
low, and the AI status register shows that the analog input device
is in the not-busy and interrupting state.

C
O

N
V

E
R

T
 S

T
A

R
T

A
D

57
4A

 B
U

S
Y

A
/D

 C
O

N
V

E
R

T
 E

N
A

B
LE

A
/D

 C
O

N
V

E
R

T
 O

U
T

B
U

S
Y

 S
ta

te
__

__
__

_/
IN

T
 S

ta
te
--

--
--

--
-\

E
O

C
IN

T
 E

N
A

B
LE
--

--
--

--
/

A
/D

 IN
T

IR
O

 3
-7

tc
 m

in
 =

 1
5p

s
tc

 m
ax

 =
 3

5p
s

/
2

sy
st

em
 c

lo
ck

 p
er

io
ds

98

`A/D Interrupt'

The actual `A/D interrupt' signal (A/D INT) is a result of the
logical ANDing of the INT STATE status bit in the Al status
register, and the EOCINT ENABLE bit from the AI control
register. The inverted result generates A/D INT (an active low
signal), which goes to the interrupt circuitry.

`A/D Convert Out'

The 'AID convert out' (A/D CO) signal is brought out to the
distribution panel connector on the Data Acquisition Adapter.

The `A/D convert out' signal is set (TTL high) when a conversion
has been commanded by programming the convert start bit. The
signal remains high until the conversion is complete. If the analog
signals received by the on-board analog input device are from an
external device that can be made to send data on receipt of a TTL
high pulse, you may use a synchronization scheme in which the
program's request for an analog-to-digital conversion triggers
(using 'AID convert out') the output of analog data from the
external device.

`AID Convert Enable'

The `A/D convert enable' (A/D CE) signal is brought out to the
distribution panel connector on the Data Acquisition Adapter.

By holding the 'convert enable in' signal low (TTL), an external
device can inhibit or delay all analog-to-digital conversions
ordered by programming.

To be considered valid and allow an analog-to-digital conversion,
the 'convert enable in' signal must remain high until the
`convert out' signal goes low again.

Analog Input Potentiometers

Four potentiometers (R22, R23, R24, and R25) on the Data
Acquisition Adapter control bipolar offset, unipolar offset, gain,
and common mode rejection for the analog input device. The
following diagram shows the location of these potentiometers.

1111111111111111111°

99

100

In the following "LSB" represents the weight of the
least-significant bit of the 12-bit digital output code of the ADC.

The table shows the 1-LSB values for each analog input range.

Range 1 LSB
0 to +10 volts 2.44 mV
-5 to +5 volts 2.44 mV

-10 to +10 volts 4.88 mV

The ADC is intended to have a 1/2-LSB offset so the exact
analog input for a given code will be in the middle of that code
(halfway between the transitions to the codes above and below
it). The information under "Bipolar Offset" and
"Unipolar Offset" explains this 1/2-LSB offset.

Bipolar Offset:

The value of R22 is set so the transition from the digital output
code 0000 0000 0000 to 0000 0000 0001 occurs for an input
voltage 1/2 LSB above negative full scale. R22 takes effect when
a bipolar range (-5 to +5 volts or -10 to +10 volts) is selected.

The following shows the input voltages for the transition from the
output code 0000 0000 0000 to 0000 0000 0001.

Range Input Voltage for First Code
Transition

-5 to +5 volts -4.99878 volts
-10 to +10 volts -9.99756 volts

101

The following shows the first few output-code transitions for the
-5 to +5 volt range.

Output Code

0000 0000 0010

0000 0000 0001

H'4 LS8 = 1.22 mV

0000 0000 0000

Code Center Point

Ige..1 LS8 2.44 mV

5.00000V 4.99878V 4.99634V

Analog Input

Gain:

The value of R23 is set so the last transition (1111 1111 1110 to
1111 1111 1111) occurs for an input voltage 1-1/2 LSB below
full scale.

The following shows the input voltage for the transition from the
output code 1111 1111 1110 to 1111 1111 1111.

Range Input Voltage for Last Code
Transition

0 to +10 volts +9.99634 volts

-5 to +5 volts +4.99634 volts

-10 to +10 volts +9.99268 volts

The following shows the last few output-code transitions for the
-10 to +10 volt range.

Output Code

1111 1111 1111 -.

1111 1111 1110

1-4-1 LSB .. 4.88 mV./At--
,""

.."-

./'
...--

1111 1111 1101 .
.---

.--

14 LS8 - 2.44 mV

9.98780V 9.99268V 9.99512V

Analog Input

102

103

Unipolar Offset:

The value of R24 is set so the first transition (0000 0000 0000 to
0000 0000 0001) occurs for an input voltage of +1/2 LSB. R24
takes effect when the unipolar range (0 to +10 volts) is selected.

The following shows the first few output-code transitions for the

0 to +10 volt range.

Output Code

0000 0000 0010 ,-""

14.016 LS8 1.22

0000 0000 0001
LSB . 2.44 mV

0000 0000 0000

0 1.22 mV

Common Mode Rejection:

3.66 mV

Analog Input

R25 allows for the reduction and balancing of the error caused by
common mode noise (voltage common to both sides of an analog
input channel). The common-mode input range specification for
the analog input device is +11 volts maximum. The value of R25
is set so on the most sensitive range (-5 to +5 volts), the effect of
common mode voltage is balanced on each side of zero volts. For
example, a common mode voltage of +11 volts produces the same
output code as a common mode voltage of -11 volts.

41/00--,
WD1
WD2Mr

BUFFREAD

Binary I/O Device

Following is a block diagram of the binary I/O device.

Binary
Device
Control
Decode

A
op

op

OA

iv
po

02

81 HOLD

LDO-LD7
HDO-1-107

Binary
In

Register

RD 81 VALU

LDOLID7
__ HDO-HD7

>

B10-13115

BO GATE

Binary
Out
Register

B00-13015

WR BO VALUE

LDO

LD2

Binary
Control
Register

80 STROBE

81 CTS

WR BIN CONT

LDO5----
LD2

Binary
Status
Register

81 STROBE

BO CTS

...---.1
RD BIN STATUS

7

7

CI

104

The Data Acquisition Adapter's binary I/O device has the
following features:

A 16-bit binary output port (BOO through B015)

A 16-bit binary input port (BIO through BI15)

Input and output handshaking over the 'strobe' and
'clear-to-send' lines

Direct control using BO GATE ('binary out gate') and
81 HOLD (`binary in hold').

Digital signals have only two voltage states: On (high, +3 volts)
and Off (low, +0.2 volts). Digital signals in this range are called
17'L signals, because they are the proper levels to be interpreted
by the transistor-to-transistor logic circuitry. These signals have
many uses in data acquisition and control applications. Among
these are sensing the state of two-state devices and controlling
devices that require two-state control signals.

Binary I/O Device Control

The use of the AS8 strobe causes the binary I/O device to be
accessed as device number 8.

The iTkg strobe as an enable, the WDO through WD2 word bits,
and the BUFFREAD signal are used to decode which binary
decode operation is to occur.

Following are the four decode operations:

WR BIN CONT

RD BIN STATUS

Write binary control: Controls the
latching of the binary output strobe
(BO STROBE) and the binary input
clear-to-send (13! CTS) bits by the binary
control register.

Read binary status: Controls the reading
of the binary input strobe (BI STROBE)
and the binary output clear to send
(BO CTS) bits by the binary status
register.

WR BO VALUE Write binary value: Controls the writing
of the binary output word (BOO through
B015) to the binary output register.

RD BI VALUE Read binary value: Controls the reading
of the binary input word (BIO through
BI15) from the binary input data register.

105

Binary I/O Device Registers

Following is a description of the binary I/O device registers.

Binary Control Register Contains the BO STROBE bit and
the BI CTS bit. These bits do not
physically cause or prevent binary
I/O events from occurring. They are
programming control bits.

Binary Status Register Allows the status of BO CTS and
BI STROBE bits to be monitored.
These bits do not physically cause or
prevent binary I/O events from
occurring. They are programming
status bits.

Binary Input Register When BI HOLD is brought high (or if
no connection is made), the binary
input register is not latched and
allows the current state of the binary
input lines to be monitored by reading
the binary input register.
Grounding BI HOLD causes the
binary input register to latch the
current state of all binary input lines.
If the grounding of the BI HOLD line
is maintained, any later read will
obtain the value that was present
when the line was initially grounded.

Binary Output Register Contains the binary output word
(BOO through B015). Grounding the
BO GATE signal places the binary
output port in the tri-state condition
(all points floating). The binary
outputs are gated out when the
BO GATE signal is brought high
(or if no connection is made).

106

107

Binary Output Subsystem

Following is a description of the binary output subsystem.

Binary Output Port (BOO through B015)

This subsystem uses high-power, tri-state, bus-driving devices.
Changes in the binary output word are carried out on a per-bit
basis. Only those bits affected by a change in the output word are
actually changed. All others remain the same.

The output port of the binary I/O device supplies 16 high/low
signals under program control. As with the input port, these
signals can be used individually or considered as a 16-bit data

word.

Binary Out Gate

You may place the output port in tri-state by pulling the binary
out gate (BO GATE) lines low. These and all other data,
handshaking, and control lines are pulled high by internal resistors

to +5 volts. No connections to them are necessary unless your

application requires handshaking or control.

Binary Output Handshaking

Because all communication lines are internally pulled up to their
logical true state, you can use or not use binary output
handshaking, depending on the requirements of your
communication setup.

Binary output can be synchronized with the data input capabilities
of the external device. The external device must be able to send a
TTL signal to indicate it is ready for new data. It also must be
able to accept parallel binary data when it recieves a signal from
the Data Acquisition Adapter's binary I/O device indicating the
data is available.

108

Error Codes

Errors return in decimal to the status variable. Check
this variable after an execution to see if an error has
occurred. All errors return in the same way. There is,
however, a difference between "hard" and "soft"
errors, as explained below.

No Error
You see a No Error condition reported in the status
variable when everything is working properly.

Error Code Description

0

Soft Error

No Error: The function has executed
normally and control returns to the
caller.

A soft error allows the function to execute, but
affects the integrity of the data.

Error Code Description

1 Timer Overrun: The execution rate was
faster at times than the device and
function could manage. The function
executed, but a small percentage of
samples was taken at an irregular and
slower rate than specified.

142 Excessive Timer Overrun: The execution
rate was often faster than the device and
function could manage. The function

executed, but a large percentage of
samples was taken at an irregular and
slower rate than specified.

109

Error Code Description

135 Invalid Count Range: An incorrect value
is specified for the count argument.

136 Unknown Handshake Value: An
incorrect value is specified for the
handshake argument.

137 Unknown Bit Value: The value for the
bit number argument is outside the range
of valid bits.

138 Device Timeout: A device that does not
exist was specified for the device
argument or the external handshaking
did not occur.

139 Invalid Rate Range: The value for the
rate argument is outside the valid range.

110

Hard Errors
A hard error indicates a failure to execute. The
function ends prematurely and control returns to the
caller. No data is collected.

Error Code Description

-2 No Device Driver: (Compiled languages
only). The device driver DAC.COM was
not found.

128 Unknown Adapter: The requested
adapter is either not in the system (that
is, no adapter is addressed to that
adapter number), or the adapter is not
working.

131 Unknown Device: Either the requested
device is not known, or a presence test
on the device has failed.

132 Unknown Storage Operation: An
incorrect value is specified for the storage
argument.

133 Unknown Execution Mode: An incorrect
value is specified for the execution mode
argument.

134 Invalid Channel Range: Values for the
channel low and channel high arguments
do not set a valid channel range (that is,
chanhi has a lower value than chanlo or
is greater than 255).

111

APPENDIX C

PROGRAMS

112

C *************************powER****************************
C

* THIS PROGRAM MEASURES OUTPUT VOLTAGE FROM A WIDE RANGE *

* LOG-CHANNEL AMPLIFIER WHICH IS RELATED TO THE POWER *

C * OF OREGON STATE UNIVERSITY TRIGA REACTOR (OSTR), *

C * 10 VOLTS CORRESPONDS TO 1 MEGA WATT.
* THE REACTOR POWER IS READ FROM THE LINEAR CHANNEL TO *

C * GET A MORE ACCURATE EQUATION BETWEEN REACTOR POWER AND *
* THE ADC OUTPUT CODE (VOLTAGE). THE POWER IS MEASURED *

C * TEN TIMES FOR EACH CASE USING ANALOG INPUT SIMPLE *
* FUNCTION (AINS),AND AN AVERAGE OF THESE MEASUREMENTS *

C * IS TAKEN.
C **

PROGRAM POWER
INTEGER*2 ADAPT,DEVICE,CHANLO,CTRL,

*RAWVAL,STAT,I
CHARACTER*14 ANS,DATAOUT
ADAPT=0
DEVICE=9
CHANLO=3
CTRL=0
STAT=0
I=0
WRITE(*,5)

5 FORMAT(' ENTER OUTPUT DATA FILE NAME '/)
READ(*,1)DATAOUT

1 FORMAT(A14)
OPEN(UNIT=81,FILE=DATAOUT,STATUS='NEW')

7 WRITE(*,10)
10 FORMAT(' ENTER R WHEN YOU ARE READY'/)

READ(*,1)ANS
IF(ANS.EQ.'R'.OR.ANS.EQ.'r') GOTO 15
GOTO 7

15 P1=0.0
DO 150 J=1,10
CALL AINS(ADAPT,DEVICE,CHANLO,CTRL,
*RAWVAL,STAT)
IF(STAT.NE.0) GOTO 300
P1=RAWVAL+P1

150 CONTINUE
P1=P1/10.0
WRITE(81,100)P1
WRITE(*,100)P1

100 FORMAT(1X,F10.0)
WRITE(*,20)

20 FORMAT(' ENTER Y WHEN YOU HAVE OTHER DATA OR ANY
*CHERACTOR IF NOT '/)
READ(*,1)ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'y') GOTO 7
GOTO 400

300 WRITE(*,200)STAT
200 FORMAT(1X,'EXECUTION ERROR',I6/)
400 CLOSE(81)

STOP
END

113

C ************************cupvE*****************************

C * THIS PROGRAM IS USED TO FIND AN EQUATION BETWEEN *
C * THE REACTOR POWER AND THE MEASURED ADC OUTPUT CODE. *
C * SINCE THE CODE IS PROPORTIONAL TO THE LOGARITHM OF *

* REACTOR POWER , THE LOGARITHM OF THE POWER IS TAKEN, *
C * AND LINEAR REGRESSION IS USED TO FIND THE EQUATION.
C * THE EQUATION IS IN THE FORM OF (POWER = 10**(A+B*Cp)) *
C * WHERE Cp IS THE CODE ASSOCIATED WITH REACTOR POWER.
C **

DIMENSION X(100),Y(100),Z(100),R(100)
SUM0=0.0
SUM1=0.0
SUM2=0.0
SUM3=0.0
SUM4=0.0
PRINT*,' ENTER THE NUMBER OF DATA '

READ(*,1)I
1 FORMAT(I3)

DO 10 J=1,I
READ(*,2)X(J),Y(J)

2 FORMAT(2F10.0)
Z(J)=ALOG10(Y(J))

10 CONTINUE
WRITE(*,3)(X(J),Y(J),J=1,I)

3 FORMAT(1X,2F15.5)
DO 20 JJ=1,I
R(JJ)=Z(JJ)*X(JJ)

20 CONTINUE
DO 30 II=1,I
SUMO=SUMO+R(II)
SUM1=SUM1+X(II)
SUM2=SUM2+Z(II)
SUM3=SUM3+X(II)*X(II)
SUM4=SUM4+Z(II)*Z(II)

30 CONTINUE
B=(SUMO-SUM1*SUM2/I)/(SUM3-SUM1*SUM1/I)
A=(SUM2/I-B*SUM1/I)
XR=(SUMO-SUM1*SUM2/I)**2/((SUM3-SUM1*SUM1/I)*(SUM4-SUM2*
*SUM2/I))
WRITE(*,40)A,B,XR

40 FORMAT(1X,'A= ',F15.5,1X,'B= ',F15.5,1X,'R*2 = ',F15.10)
END

-)

C ** *LOGGER **

C * *

C * WRITTEN BY *

C * ALLA J. MOHHAMMAD BAKIR *

C * COLLEGE OF ENGINEERING *

C * NUCLEAR ENGINEERING DEPTARTMENT *

C * OREGON STATE UNIVERSITY *

C * MAY 1 , 1988 *

C * THIS PROGRAM IS DERIVED FROM A PROGRAM WRITTEN BY: *
C * ROBERT J. TUTTLE,ATOMICS INTERNATIONAL, MARCH 1,1967. *
C * THIS PROGRAM MEASURES A VOLTAGE THAT IS RELATED TO *
C * REACTOR POWER USING DATA ACQUSITION AND CONTROL *
C * ADAPTER , AND FROM THE REACTOR POWER HISTORY THE *
C * REACTIVITY CAN BE CALCULATED USING THE POINT KINETICS *
C * EQUATIONS. *

C * INPUT DATA CONSIST OF THE FRACTIONAL RELATIVE DELAYED *
C * NEUTRON YIELDS(A(I),SUM OF A(I)=1.0),DELAYED NEUTRON *
C * PRECURSOR DECAY CONSTANTS (LAMBDA(I) IN RECIPROCAL *
C * SECOND), THE PROMPT NEUTRON LIFETIME (L IN SECONDS), *
C * THE EFFECTIVE DELAYED NEUTRON FRACTION (BETA), THE *
C * VALUE OF THE SOURCE CORRECTION TERM (SC IN CENTS/ *
C * SECOND/COUNT). *

C * THIS PROGRAM USES A SPECIAL FUNCTION SUBROUTINE, FOR *
C * MORE INFORMATION ABOUT THESE FUNCTIONS REFER TO THE *
C * IBM PERSONAL COMPUTER DATA ACQUISITION AND CONTROL *
C * ADAPTER PROGRAMMING SUPPORT. *

C * REACTOR POWER SHOULD BE CONSTANT FOR ABOUT 1 MINTUE *
C * BEFORE DATA COLLECTION BEGINS AND NO REACTIVITY *
C * CHANGE SHOULD BE MADE DURING THIS PERIOD , THE POWER *
C * DATA IS COLLECTED BY A RATE=RATE1, AND THE COLLECTION *
C * TIME IS EQUAL TO COUNT1/RATE1 WHICH IS EQUAL TO *
C * 1 MINUTE, THIS WAITING TIME PERMITS ESTABLISHMENT OF *
C * THE EQUILIBRIUM PRECURSOR POPULATION WHICH IS *
C * CALCULATED FROM THE AVERAGE POWER IN THE FIRST ONE *
C * MINUTE. *

C * REACTOR POWER FOR WHICH THE REACTIVITY TO BE FOUND IS *
C * MEASURED BY A RATE=RATE2, AND COLLECTION TIME IS *
C * EQUAL TO COUNT2/RATE2. *
, * THIS PROGRAM HAS THREE SECTIONS, FIRST IS A POWER *,
C * MEASURING SECTION, IN WHICH A VOLTAGE RELATED TO THE *
C * REACTOR POWER IS MEASURED BY THE DATA ACQUISION AND *
C * CONTROL ADAPTER, A SECOND SECTION INVOLVED WITH A *
C * REACTIVITY CALCULATION , AND FINALLY DISPLAY OF *
C * REACTIVITY ON A SEVEN SEGMENT DISPLAY. *

C * ***
PROGRAM LOGGER
DIMENSION Y1(3000),Y2(3000),PIN(3000),XB(3000)
INTEGER*2 RAWDTA(3000),POWDTA(3000)
INTEGER*2 ADAPT,DEVICE,CHANLO,CTRL,MODE,

*STOR,STAT
INTEGER*4 COUNT1,RATE1,COUNT2,RATE2
INTEGER*4 COUNT,RATE
REAL A(6),LAMBDA(6),L,T(3000),R(3000)
DOUBLE PRECISION
1B(6),BD(6),C(6),D(6),X1(6),K(3000),
2AT,DN,P0,DP,PBAR,SC,SUM
CHARACTER*14 DATAOUT,FILENAME,RECIN
ADAPT =O
DEVICE=9
CHANLO=3

114

115

CTRL=0
MODE=0
STOR=0
STAT=0
READ(*,10)(A(I),I=1,6)

10 FORMAT(6F10.0)
READ(*,10)(LAMBDA(I),I=1,6)
READ(*,20)L,BETA,SC

20 FORMAT(3F10.0)
WRITE(*,1)

1 FORMAT(' ENTER COUNT1, RATE1 214 FORMAT '/)
READ(*,2)COUNT1,RATE1

2 FORMAT(2I4)
WRITE(*,3)

3 FORMAT(' ENTER COUNT2,RATE2 214 FORMAT '/)
READ(*,2)COUNT2,RATE2
WRITE(*,4)

4 FORMAT(' ENTER OUTPUT DATA FILENAME '/)
READ(*,5)DATAOUT

5 FORMAT(A14)
WRITE(*,6)

6 FORMAT(' ENTER REC. FILENAME '/)
READ(*,5)FILENAME
WRITE(*,7)

7 FORMAT(' ENTER POWER FILENAME AND BE READY 1/)
READ(*,5)RECIN
OPEN(UNIT=81,FILE=DATAOUT,STATUS='NEW1)
OPEN(UNIT=10,FILE=FILENAME,STATUS=INEW')
OPEN(UNIT=90,FILE=RECIN,STATUS=1NEW')
COUNT=COUNT1
RATE=RATE1

C
C POWER MEASURING SECTION
C

CALL AINM(ADAPT,DEVICE,CHANLO,CTRL,
*MODE,STOR,COUNT,RATE,RAWDTA(1),STAT)
IF(STAT.NE.0) GOTO 300
COUNT=COUNT2
RATE=RATE2
CALL AINM(ADAPT,DEVICE,CHANLO,CTRL,
*MODE,STOR,COUNT,RATE,POWDTA(1),STAT)
IF(STAT.NE.0) GOTO 300
WRITE(81,100)(RAWDTA(I),I=1,COUNT1)
WRITE(81,100)(POWDTA(I),I=1,COUNT2)

100 FORMAT(1X,5I10)
CLOSE(81)

C
C REACTIVITY CALCULATION SECTION
C

DT=1.0/RATE2
NOP=COUNT2
DO 200 I=1,COUNT1

IF(RAWDTA(I).GE.O.AND.RAWDTA(I).LE.2488)THEN
Yl(I)=10.**(-4.06015+0.00245*RAWDTA(I))
ELSEIF(RAWDTA(I).GT.2488.AND.RAWDTA(I).LT.2680)THEN
Y1(I)=10.**(-3.81625+0.00233*RAWDTA(I))
ELSEIF(RAWDTA(I).GE.2680)THEN
Y1(I)=10.**(-4.26878+0.0025*RAWDTA(I))
ENDIF

200 CONTINUE

116

DO 350 I=1,COUNT2

IF(POWDTA(I).GE.O.AND.POWDTA(I).LE.2488)THEN
Y2(I)=10.**(-4.06015+0.00245*POWDTA(I))
ELSEIF(POWDTA(I).GT.2488.AND.POWDTA(I).LT.2680)THEN
Y2(I)=10.**(-3.81625+0.00233*POWDTA(I))
ELSEIF(POWDTA(I).GE.2680)THEN
Y2(I)=10.**(-4.26878+0.0025*POWDTA(I))
ENDIF

350 CONTINUE
AT=L/BETA/DT
SUM1=0.0
DO 400 I=1,COUNT1
SUM1=SUM1+Y1(I)

400 CONTINUE
C(1)=SUM1/COUNT1
SC=SC*DT/100.0
R(1)=-SC/C(1)
K(1)=1.0+BETA*(1.0+BETA*R(1))*R(1)
T(1)=DT
DO 1100 1=1,6
Xl(I)=DBLE(LAMBDA(I)*DT)
B(I)=DEXP(-Xl(I))
IF(X1(I).GT.0.1) GOTO 1000
BD(I)=X1(I)-0.5*X1(I)**2+0.162582*X1(I)**3
D(I)=0.5*X1(/)-0.166666*X1(I)**2+0.041847*X1(1)**3
GOTO 1100

1000 BD(1)=1.0D0O-B(I)
D(I)=(X1(I)-BD(I))/X1(I)

1100 C(I)=K(1)*C(1)
N1=NOP-2
DO 1300 N=2,N1
K(N)=1.0+BETA*K(N-1)*R(N-1)
SUM=0.0
DP=0.5*(Y2(N+1)-Y2(N))
PO=Y2(N)-0.5*DP
DO 1200 1=1,6

C(I)=C(I)*B(I)+K(N)*(Y2(N)*BD(I)+2*DP*D(I))
1200 SUM=SUM+A(I)*C(I)

PBAR=(Y2(N+1)+Y2(N))/2.0
PIN(N)DT/PBAR
DN=Y2(N+1)-Y2(N)
R(N)=1.0+(AT*DN-SUM-SC)/(PBAR*K(N))
K(N)=1.0+BETA*K(N)*R(N)
R(N)=1.0D00+(AT*DN-SUM-SC)/(PBAR*K(N))
WRITE(*,500)R(N)

500 FORMAT(1X,E16.6)
1300 T(N) -T(N -1) +DT

WRITE(10,19)(T(N),R(N),N=1,N1)
19 FORMAT(1X,F10.5,2X,E16.6)

WRITE(90,19)(T(N),Y2(N),N=1,N1)
CLOSE(10)
CLOSE(90)

C
C REACTIVITY DISPLAYING SECTION
C

COUNT -1000
BIT=0
HNDSHK=0
DEVICE=8
DO 205 I=1,N1

117

XB(I)=ABS(R(I))
NX=1000*XB(I)
NX1=NX/1000
NX2=NX/100-NX1*10
NX3=NX/10-10*NX2-100*NX1
NX4=NX-10*NX3-100*NX2-1000*NX1
RAWVALNX1*4096+NX2*256+NX3*16+NX4
CALL BOUS(ADAPT,DEVICE,HNDSHK,RAWVAL,
*STAT)
IF(STAT.NE.0) GOTO 300
IF(R(I).LT.0.0) THEN
RAW=1
GOTO 405
ELSE
RAW=0
ENDIF

405 CALL BITOUS(ADAPT,DEVICE,BIT,RAW,STAT)
IF(STAT.NE.0) GOTO 300
CALL DELAY(ADAPT,COUNT,STAT)
IF(STAT.NE.0) GOTO 300

205 CONTINUE
300 WRITE(*,150)STAT

WRITE(*,102)
102 FORMAT(1X,' EXECUTION COMPLETE. ',/)

GOTO 101
150 FORMAT(1X,' EXECUTION ERROR ',I6)
101 STOP

END

